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Introduction to Krylov Subspace Methods
I Define k-dimensional Krylov subspace matrix

Kk =
[
x0 Ax0 · · · Ak−1x0

]
Krylov subspace methods seek to best use the information in Kk to solve
eigenvalue problems (or linear systems/least squares problems).

I Show that K−1n AKn is a companion matrix C:
Letting k

(i)
n = Ai−1x, we observe that

AKn =
[
Ak

(1)
n · · · Ak

(n−1)
n Ak

(n)
n

]
=
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k
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n · · · k
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n Ak

(n)
n

]
,

therefore premultiplying by K−1m transforms the first n− 1 columns of AKn

into the last n− 1 columns of I,

K−1n AKn =
[
K−1n k

(2)
n · · · K−1n k

(n)
n K−1n Ak

(n)
n

]
=
[
e2 · · · en K−1n Ak

(n)
n

]



Krylov Subspaces

I Given QR = Kk, we obtain an orthonormal basis for the Krylov subspace,

Kk(A,x0) = span(Q) = {ρ(A)x0 : deg(ρ) < k}

I Consider whether k − 1 steps of power iteration starting from x0 lead to an
approximation in the Krylov subspace, also consider QR (subspace) iteration:
The approximation obtained from k − 1 steps of power iteration starting from
x0 is given by the Rayleigh-quotient of y = Akx0. This vector is within the
Krylov subspace, y ∈ Kk(A,x0).



Krylov Subspace Methods

I Given QR = Kk, we obtain an orthonormal basis for the Krylov subspace
and Hk = QTAQ which minimizes ||AQ−QH||2:
The solution to the linear least squares problem QX ∼= AQ is
X = QTAQ = H

I Hk is Hessenberg, because the companion matrix Ck is Hessenberg:

Hk = QTAQ = RK−1k AKkR
−1 = RCkR

−1



Rayleigh-Ritz Procedure
I The eigenvalues/eigenvectors of Hk are the Ritz values/vectors:

Hk = XDX−1

eigenvalue approximations based on Ritz vectors X are given by QX

I The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only Hk and Q:
The Ritz value with greatest magnitude λmax(H) will be the maximum
Rayleigh quotient of any vector in Kk = span((Q)),

max
x∈span(Q)

xTAx

xTx
= max

y 6=0

yTQTAQy

yTy
= max

y 6=0

yTHy

yTy
= λmax(H),

the quality of the approximation can also be shown to be optimal for other
eigenvalues/eigenvectors.



Arnoldi Iteration

I Arnoldi iteration computes H directly using the recurrence qTi Aqj = hij :
We have that

qTi Aqj = qTi (QHnQ
T )qj = eiHnej = hij

I After each matrix-vector product, orthogonalization is done with respect to
each previous vector:
Given uj = Aqj , compute hij = qTi uj for each i ≤ j, forming a column of the
H matrix at a time



Lanczos Iteration

I Lanczos iteration provides a method to reduce a symmetric matrix to
tridiagonal matrix:
Arnoldi iteration on a symmetric matrix, will result in an upper-Hessenberg
matrix H as before, except that it must also be symmetric, since

HT = (QTAQ)T = QTATQ = QTABQ = H,

which implies that H must be tridiagonal.
I After each matrix-vector product, it su�ces to orthogonalize with respect to

two previous vectors:
Since hij = 0 if |i− j| > 1, given uj = Aqj , it su�ces to compute only
hjj = qTj uj and hj−1,j = hj,j−1 = qTj−1qj .



Cost Krylov Subspace Methods

I Consider a matrix with m nonzeros, what is the cost of a matrix-vector
product?
m multiplications and at most m additions

I How much does it cost to orthogonalize the vector at the kth iteration?
O(nk) work for k inner products in Arnoldi, O(n) work in Lanczos. For Arnoldi
with k-dimensional subspace, orthogonalization costs O(nk2), matrix-vector
products cost O(mk), so generally desire nk < m.



Restarting Krylov Subspace Methods
I In finite precision, Lanczos generally loses orthogonality, while

orthogonalization in Arnoldi can become prohibitively expensive:
I Arnoldi cost of orthogonalization dominates if k > m/n.
I In Lanczos, reorthogonalizing iterate to previous guesses can ensure

orthogonality.
I Selective orthogonalization stratgies control when, and even with respect to

what previous columns of Q, each new iterate uj = Aqj should be
orthogonalized.

I Consequently, in practice low-dimensional Krylov subspace methods are
constructed repeatedly using carefully selected new starting vectors:
If we wish to find a particular eigenvector isolate some eigenspaces,
restarting is beneficial

I can orthogonalize to previous eigenvector estimates to perform deflation
I can pick starting vector as Ritz vector estimate associated with desired

eigenpair
I given new starting vector, can discard previous Krylov subspace, which helps

make storing the needed parts of Q possible



Convergence of Lanczos Iteration

I Cauchy interlacing theorem: eigenvalues of Hk, λ̃1 ≥ · · · ≥ λ̃n with respect
to eigenvalues of A, λ1 ≥ · · · ≥ λn satisfy

λi ≤ λ̃i ≤ λn−k+i

I Convergence to extremal eigenvalues is generally fastest:



Applications of Eigenvalue Problems: Matrix Functions
I Given A = XDX−1 how can we compute Ak?

A2 = XDX−1XDX−1

= XD2X−1,

Ak = XDkX−1

I What about eA ? log(A)? generally f(A)?

eA = I +A+A/2! + · · ·
= X(I +D +D2/2! + · · · )X−1

= XeDX−1

log(A) = X log(D)X−1

f(A) = Xf(D)X−1



Applications of Eigenvalue Problems: Di�erential Equations

I Consider solutions to an ordinary di�erential equation of the form
dx
dt
(t) = Ax(t) + f(t) with x(0) = x0:

x(t) = etAx0 +

∫ t

0
e(t−τ)Af(τ)dτ

I Using A = XDX−1 permits us to compute the solution explicitly (Jordan
form also su�ces if A is defective):

x(t) = XetDX−1x0 +X

∫ t

0
e(t−τ)DX−1f(τ)dτ



Di�erential Equations using the Generalized Eigenvalue Problem
I Consider a more general linear di�erential equation of the form

B dx
dt
(t) = Ax(t) + f(t) with x(0) = x0, which we can reduce to the usual

form by premultiplying with B−1:
dx

dt
(t) = B−1Ax(t) +B−1f(t)

However, B may not be invertible and B−1A is generally nonsymmetric even
when B−1 and A are.

I If we can find X such that A = XDAX−1 and B = XDBX−1 we could
solve this equation while preserving symmetry of A and B:

x(t) = etB
−1Ax0 +

∫ t

0
e(t−τ)B

−1Af(τ)dτ

= etXD−1
B DAX−1

x0 +

∫ t

0
e(t−τ)XD−1

B DAX−1
f(τ)dτ

= XetD
−1
B DAX−1x0 +X

∫ t

0
e(t−τ)D

−1
B DAX−1f(τ)dτ



Generalized Eigenvalue Problem

I A generalized eigenvalue problem has the form Ax = λBx,

AX = BXD

B−1A = XDX−1

I When A and B are symmetric, if one is SPD, we can perform Cholesky on B,
multiply A by the inverted factors, and diagonalize it:

AX = LLTXD

L−1AL−T︸ ︷︷ ︸
Ã

LTX︸ ︷︷ ︸
X̃

= LTX︸ ︷︷ ︸
X̃

D



Canonical Forms Generalized Eigenvalue Problem

I For nonsingular U ,V , A− λB = U(J − λI)V T where J is in Jordan form

I For some unitary P ,Q, A = PTAQH and B = PTBQH where TA and TB

are triangular



Nonlinear Eigenvalue Problem

I In a polynomial eigenvalue problem, we seek solutions λ,x to

d∑
i=0

λiAix = 0

I Assuming for simplicity that Ad = I, solutions are given by solving the
matrix eigenvalue problem with the block-companion matrix−Ad−1 · · · −A0

I 0 · · ·
. . . . . .




