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Introduction to Krylov Subspace Methods

» Define k-dimensional Krylov subspace matrix
K, = [1130 Axg - Ak_lwo]
Krylov subspace methods seek to best use the information in K, to solve
eigenvalue problems (or linear systems/least squares problems).

» Show that K, ' AK, is a companion matrix C:
Letting D — Ai-1x we observe that

AK, = Ak ... Ar(tD Ak,@] - [k:ﬁ?’ AL Ak%”)],

therefore premultiplying by K! transforms the first n — 1 columns of AK,,
into the last n — 1 columns of I,

K,;lAKn:[K;lkg) o KD K;lAk:ﬁL”)]
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Krylov Subspaces

» Given QR = K, we obtain an orthonormal basis for the Krylov subspace,
Kk(A, o) = span(Q) = {p(A)zo : deg(p) < k}

» Consider whether k — 1 steps of power iteration starting from x¢ lead to an
approximation in the Krylov subspace, also consider QR (subspace) iteration:
The approximation obtained from k — 1 steps of power iteration starting from
xq is given by the Rayleigh-quotient of y = A*x. This vector is within the
Krylov subspace, y € Kr(A, o).



Krylov Subspace Methods

» Given QR = K, we obtain an orthonormal basis for the Krylov subspace
and H;, = QT AQ which minimizes ||AQ — QH||»:
The solution to the linear least squares problem QX = AQ is
X=QTAQ=H

» H,; is Hessenberg, because the companion matrix C}, is Hessenberg:

H,=Q"AQ = RK;'AK,R™' = RC,R!



Rayleigh-Ritz Procedure

» The eigenvalues/eigenvectors of Hy, are the Ritz values/vectors:

H,=XDX!
eigenvalue approximations based on Ritz vectors X are given by QX
» The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only H;, and Q:

The Ritz value with greatest magnitude \max(H ) will be the maximum
Rayleigh quotient of any vector in ki, = span((Q)),
o’ Ax y'QT AQy y"Hy
——— = max =

max = max =A H),
zespan(Q) @ yi0 YTy v gty mertH)

the quality of the approximation can also be shown to be optimal for other
eigenvalues/eigenvectors.



Arnoldi Iteration

» Arnoldi iteration computes H directly using the recurrence g/ Aq; = h;;:
We have that
q; Aq; = q} (QH,Q")q; = e;Hye; = hy;

» After each matrix-vector product, orthogonalization is done with respect to
each previous vector:

Given u; = Agq;, compute h;j = q! u; for each i < j, forming a column of the
H matrix at a time



Lanczos Iteration

» Lanczos iteration provides a method to reduce a symmetric matrix to
tridiagonal matrix:

Arnoldi iteration on a symmetric matrix, will result in an upper-Hessenberg
matrix H as before, except that it must also be symmetric, since

H" =(Q"AQ)" =Q"A"Q=Q"ABQ=H,

which implies that H must be tridiagonal.

» After each matrix-vector product, it suffices to orthogonalize with respect to
two previous vectors:
Since hi; = 0if |i — j| > 1, given u; = Agqj, it suffices to compute only
hjj = qjw;and hj_1; = hj; 1 = q]_,q;.



Cost Krylov Subspace Methods

» Consider a matrix with m nonzeros, what is the cost of a matrix-vector
product?

m multiplications and at most m additions

» How much does it cost to orthogonalize the vector at the kth iteration?
O(nk) work for k inner products in Arnoldi, O(n) work in Lanczos. For Arnoldi
with k-dimensional subspace, orthogonalization costs O(nk?), matrix-vector
products cost O(mk), so generally desire nk < m.



Restarting Krylov Subspace Methods

» In finite precision, Lanczos generally loses orthogonality, while
orthogonalization in Arnoldi can become prohibitively expensive:

» Arnoldi cost of orthogonalization dominates if k > m/n.

» In Lanczos, reorthogonalizing iterate to previous guesses can ensure
orthogonality.

» Selective orthogonalization stratgies control when, and even with respect to
what previous columns of Q, each new iterate u; = Agq; should be
orthogonalized.

» Consequently, in practice low-dimensional Krylov subspace methods are
constructed repeatedly using carefully selected new starting vectors:
If we wish to find a particular eigenvector isolate some eigenspaces,
restarting is beneficial
» can orthogonalize to previous eigenvector estimates to perform deflation
» can pick starting vector as Ritz vector estimate associated with desired
eigenpair
» given new starting vector, can discard previous Krylov subspace, which helps
make storing the needed parts of Q possible



Convergence of Lanczos Iteration

» Cauchy interlacing theorem: eigenvalues of Hy, A\; > --- > \,, with respect
to eigenvalues of A, \; > --- > ), satisfy

i <N < Ak

» Convergence to extremal eigenvalues is generally fastest:



Applications of Eigenvalue Problems: Matrix Functions
» Given A = XDX ! how can we compute A*?
A2=XDX 'XDX!
= XD?’X1,
AF = XDFX !

» What about e ? log(A)? generally f(A)?

eA=T+A+A/2+. ..
=X(I+D+D?2+... )X !
=XePx!
log(A) = X log(D)X !
f(A)=Xf(D)x*



Applications of Eigenvalue Problems: Differential Equations

» Consider solutions to an ordinary differential equation of the form
%(t) = Ax(t) + f(t) with 2(0) = x¢:

t
x(t) = ey + / NAf(r)dr
0

» Using A = X DX ! permits us to compute the solution explicitly (Jordan
form also suffices if A is defective):

t
a(t) = XePX 1ag+ X / IR X f(r)dr
0



Differential Equations using the Generalized Eigenvalue Problem

» Consider a more general linear differential equation of the form
B2 (t) = Az(t) + f(t) with 2(0) = @0, which we can reduce to the usual
form by premultiplying with B~
dx
dt
However, B may not be invertible and B~ A is generally nonsymmetric even
when B~ and A are.

» If we can find X suchthat A= XD, X 'and B= XDgX ! we could
solve this equation while preserving symmetry of A and B:

(t) = B~ ' Ax(t) + B~ f(t)

t
a(t) = e'B gy + / =BT A f () dr
0
t
_etXDBlDAX1x0+/ e(t—r)XDngAX*lf(T)dT
0

t
= XetDBlDAX_1m0+X/ e(t_T)D;BlDAX_lf(T)dT
0



Generalized Eigenvalue Problem

» A generalized eigenvalue problem has the form Az = ABz,

AX = BXD
B 'A=XDX!

» When A and B are symmetric, if one is SPD, we can perform Cholesky on B,
multiply A by the inverted factors, and diagonalize it:

AX =LL"XD
L'ALTL"X =L"X D
A X X



Canonical Forms Generalized Eigenvalue Problem

» For nonsingular U,V, A — AB = U(J — AI)V" where J is in Jordan form

» For some unitary P,Q, A = PT4Q" and B = PTgQ" where T4 and T
are triangular



Nonlinear Eigenvalue Problem

» In a polynomial eigenvalue problem, we seek solutions A\, x to
d
Z )\ZAZ':JZ =0
i=0

» Assuming for simplicity that A; = I, solutions are given by solving the
matrix eigenvalue problem with the block-companion matrix

—Agq - —Ag
1 0 .



