CS 450: Numerical Anlaysis

Lecture 12

Chapter 4 – Eigenvalue Problems
Krylov Subspace Methods and Applications of Eigenvalue Problems

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

March 1, 2018

Introduction to Krylov Subspace Methods

▶ Define k-dimensional Krylov subspace matrix

$$oldsymbol{K}_k = egin{bmatrix} oldsymbol{x_0} & oldsymbol{A} oldsymbol{x_0} & \cdots & oldsymbol{A}^{k-1} oldsymbol{x_0} \end{bmatrix}$$

Krylov subspace methods seek to best use the information in K_k to solve eigenvalue problems (or linear systems/least squares problems).

▶ Show that $K_n^{-1}AK_n$ is a companion matrix C:

Letting $oldsymbol{k}_n^{(i)} = oldsymbol{A}^{i-1} oldsymbol{x}$, we observe that

$$oldsymbol{A}oldsymbol{K}_n = egin{bmatrix} oldsymbol{A}oldsymbol{k}_n^{(1)} & \cdots & oldsymbol{A}oldsymbol{k}_n^{(n-1)} & oldsymbol{A}oldsymbol{k}_n^{(n)} \end{bmatrix} = egin{bmatrix} oldsymbol{k}_n^{(2)} & \cdots & oldsymbol{k}_n^{(n)} & oldsymbol{A}oldsymbol{k}_n^{(n)} \end{bmatrix},$$

therefore premultiplying by K_m^{-1} transforms the first n-1 columns of AK_n into the last n-1 columns of I,

$$oldsymbol{K}_n^{-1}oldsymbol{A}oldsymbol{K}_n = egin{bmatrix} oldsymbol{K}_n^{-1}oldsymbol{k}_n^{(2)} & \cdots & oldsymbol{K}_n^{-1}oldsymbol{k}_n^{(n)} & oldsymbol{K}_n^{-1}oldsymbol{A}oldsymbol{k}_n^{(n)} \end{bmatrix}$$

$$= egin{bmatrix} oldsymbol{e}_2 & \cdots & oldsymbol{e}_n & oldsymbol{K}_n^{-1}oldsymbol{A}oldsymbol{k}_n^{(n)} \end{bmatrix}$$

Krylov Subspaces

ightharpoonup Given $QR=K_k$, we obtain an orthonormal basis for the Krylov subspace,

$$\mathcal{K}_k(\boldsymbol{A}, \boldsymbol{x}_0) = span(\boldsymbol{Q}) = \{ \rho(\boldsymbol{A}) \boldsymbol{x}_0 : deg(\rho) < k \}$$

Consider whether k-1 steps of power iteration starting from x_0 lead to an approximation in the Krylov subspace, also consider QR (subspace) iteration: The approximation obtained from k-1 steps of power iteration starting from x_0 is given by the Rayleigh-quotient of $y = A^k x_0$. This vector is within the Krylov subspace, $y \in \mathcal{K}_k(A, x_0)$.

Krylov Subspace Methods

▶ Given $QR = K_k$, we obtain an orthonormal basis for the Krylov subspace and $H_k = Q^T A Q$ which minimizes $||AQ - QH||_2$:

The solution to the linear least squares problem $QX \cong AQ$ is

$$X = Q^T A Q = H$$

▶ H_k is Hessenberg, because the companion matrix C_k is Hessenberg:

$$\boldsymbol{H}_k = \boldsymbol{Q}^T \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{R} \boldsymbol{K}_k^{-1} \boldsymbol{A} \boldsymbol{K}_k \boldsymbol{R}^{-1} = \boldsymbol{R} \boldsymbol{C}_k \boldsymbol{R}^{-1}$$

Rayleigh-Ritz Procedure

▶ The eigenvalues/eigenvectors of H_k are the *Ritz values/vectors*:

$$\boldsymbol{H}_k = \boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}$$

eigenvalue approximations based on Ritz vectors $oldsymbol{X}$ are given by $oldsymbol{Q}oldsymbol{X}$

▶ The Ritz vectors and values are the *ideal approximations* of the actual eigenvalues and eigenvectors based on only H_k and Q:

The Ritz value with greatest magnitude $\lambda_{max}(H)$ will be the maximum Rayleigh quotient of any vector in $\mathcal{K}_k = span(Q)$,

$$\max_{\boldsymbol{x} \in span(\boldsymbol{Q})} \frac{\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{x}} = \max_{\boldsymbol{y} \neq 0} \frac{\boldsymbol{y}^T \boldsymbol{Q}^T \boldsymbol{A} \boldsymbol{Q} \boldsymbol{y}}{\boldsymbol{y}^T \boldsymbol{y}} = \max_{\boldsymbol{y} \neq 0} \frac{\boldsymbol{y}^T \boldsymbol{H} \boldsymbol{y}}{\boldsymbol{y}^T \boldsymbol{y}} = \lambda_{\textit{max}}(\boldsymbol{H}),$$

the quality of the approximation can also be shown to be optimal for other eigenvalues/eigenvectors.

Arnoldi Iteration

Arnoldi iteration computes H directly using the recurrence $q_i^T A q_j = h_{ij}$:

We have that

$$oldsymbol{q}_i^T oldsymbol{A} oldsymbol{q}_j = oldsymbol{q}_i^T (oldsymbol{Q} oldsymbol{H}_n oldsymbol{Q}^T) oldsymbol{q}_j = oldsymbol{e}_i oldsymbol{H}_n oldsymbol{e}_j = h_{ij}$$

After each matrix-vector product, orthogonalization is done with respect to each previous vector:

Given $u_j = Aq_j$, compute $h_{ij} = q_i^Tu_j$ for each $i \leq j$, forming a column of the H matrix at a time

Lanczos Iteration

► Lanczos iteration provides a method to reduce a symmetric matrix to tridiagonal matrix:

Arnoldi iteration on a symmetric matrix, will result in an upper-Hessenberg matrix ${m H}$ as before, except that it must also be symmetric, since

$$\boldsymbol{H}^T = (\boldsymbol{Q}^T \boldsymbol{A} \boldsymbol{Q})^T = \boldsymbol{Q}^T \boldsymbol{A}^T \boldsymbol{Q} = \boldsymbol{Q}^T \boldsymbol{A} B \boldsymbol{Q} = \boldsymbol{H},$$

which implies that H must be tridiagonal.

► After each matrix-vector product, it suffices to orthogonalize with respect to two previous vectors:

Since $h_{ij}=0$ if |i-j|>1, given $\boldsymbol{u}_j=\boldsymbol{A}\boldsymbol{q}_j$, it suffices to compute only $h_{jj}=\boldsymbol{q}_j^T\boldsymbol{u}_j$ and $h_{j-1,j}=h_{j,j-1}=\boldsymbol{q}_{j-1}^T\boldsymbol{q}_j$.

Cost Krylov Subspace Methods

- \blacktriangleright Consider a matrix with m nonzeros, what is the cost of a matrix-vector product?
 - m multiplications and at most m additions
- ▶ How much does it cost to orthogonalize the vector at the kth iteration? O(nk) work for k inner products in Arnoldi, O(n) work in Lanczos. For Arnoldi with k-dimensional subspace, orthogonalization costs $O(nk^2)$, matrix-vector products cost O(mk), so generally desire nk < m.

Restarting Krylov Subspace Methods

- ► In finite precision, Lanczos generally loses orthogonality, while orthogonalization in Arnoldi can become prohibitively expensive:
 - Arnoldi cost of orthogonalization dominates if k > m/n.
 - ► In Lanczos, reorthogonalizing iterate to previous guesses can ensure orthogonality.
 - ightharpoonup Selective orthogonalization stratgies control when, and even with respect to what previous columns of Q, each new iterate $u_j = Aq_j$ should be orthogonalized.
- Consequently, in practice low-dimensional Krylov subspace methods are constructed repeatedly using carefully selected new starting vectors: If we wish to find a particular eigenvector isolate some eigenspaces, restarting is beneficial
 - can orthogonalize to previous eigenvector estimates to perform deflation
 - can pick starting vector as Ritz vector estimate associated with desired eigenpair
 - given new starting vector, can discard previous Krylov subspace, which helps make storing the needed parts of Q possible

Convergence of Lanczos Iteration

▶ Cauchy interlacing theorem: eigenvalues of H_k , $\tilde{\lambda}_1 \ge \cdots \ge \tilde{\lambda}_n$ with respect to eigenvalues of A, $\lambda_1 \ge \cdots \ge \lambda_n$ satisfy

$$\lambda_i \le \tilde{\lambda_i} \le \lambda_{n-k+i}$$

Convergence to extremal eigenvalues is generally fastest:

Applications of Eigenvalue Problems: Matrix Functions

• Given $A = XDX^{-1}$ how can we compute A^k ?

$$egin{aligned} m{A}^2 &= m{X}m{D}m{X}^{-1}m{X}m{D}m{X}^{-1} \ &= m{X}m{D}^2m{X}^{-1}, \ m{A}^k &= m{X}m{D}^km{X}^{-1} \end{aligned}$$

 $f(\mathbf{A}) = \mathbf{X} f(\mathbf{D}) \mathbf{X}^{-1}$

▶ What about $e^{\mathbf{A}}$? $\log(\mathbf{A})$? generally $f(\mathbf{A})$?

$$e^{\mathbf{A}} = \mathbf{I} + \mathbf{A} + \mathbf{A}/2! + \cdots$$

$$= \mathbf{X}(\mathbf{I} + \mathbf{D} + \mathbf{D}^2/2! + \cdots)\mathbf{X}^{-1}$$

$$= \mathbf{X}e^{\mathbf{D}}\mathbf{X}^{-1}$$

$$\log(\mathbf{A}) = \mathbf{X}\log(\mathbf{D})\mathbf{X}^{-1}$$

Applications of Eigenvalue Problems: Differential Equations

► Consider solutions to an ordinary differential equation of the form $\frac{dx}{dt}(t) = Ax(t) + f(t)$ with $x(0) = x_0$:

$$\boldsymbol{x}(t) = e^{t\boldsymbol{A}}\boldsymbol{x}_0 + \int_0^t e^{(t-\tau)\boldsymbol{A}}\boldsymbol{f}(\tau)d\tau$$

▶ Using $A = XDX^{-1}$ permits us to compute the solution explicitly (Jordan form also suffices if A is defective):

$$oldsymbol{x}(t) = oldsymbol{X} e^{toldsymbol{D}} oldsymbol{X}^{-1} oldsymbol{x}_0 + oldsymbol{X} \int_0^t e^{(t- au)oldsymbol{D}} oldsymbol{X}^{-1} oldsymbol{f}(au) d au$$

Differential Equations using the Generalized Eigenvalue Problem

▶ Consider a more general linear differential equation of the form $B\frac{dx}{dt}(t) = Ax(t) + f(t)$ with $x(0) = x_0$, which we can reduce to the usual form by premultiplying with B^{-1} :

$$\frac{dx}{dt}(t) = B^{-1}Ax(t) + B^{-1}f(t)$$

However, B may not be invertible and $B^{-1}A$ is generally nonsymmetric even when B^{-1} and A are.

▶ If we can find X such that $A = XD_AX^{-1}$ and $B = XD_BX^{-1}$ we could solve this equation while preserving symmetry of A and B:

$$\mathbf{x}(t) = e^{t\mathbf{B}^{-1}\mathbf{A}}\mathbf{x}_0 + \int_0^t e^{(t-\tau)\mathbf{B}^{-1}\mathbf{A}}\mathbf{f}(\tau)d\tau$$

$$= e^{t\mathbf{X}\mathbf{D}_B^{-1}\mathbf{D}_A\mathbf{X}^{-1}}\mathbf{x}_0 + \int_0^t e^{(t-\tau)\mathbf{X}\mathbf{D}_B^{-1}\mathbf{D}_A\mathbf{X}^{-1}}\mathbf{f}(\tau)d\tau$$

$$= \mathbf{X}e^{t\mathbf{D}_B^{-1}\mathbf{D}_A}\mathbf{X}^{-1}\mathbf{x}_0 + \mathbf{X}\int_0^t e^{(t-\tau)\mathbf{D}_B^{-1}\mathbf{D}_A}\mathbf{X}^{-1}\mathbf{f}(\tau)d\tau$$

Generalized Eigenvalue Problem

lacktriangle A generalized eigenvalue problem has the form $Ax=\lambda Bx$,

$$AX = BXD$$
$$B^{-1}A = XDX^{-1}$$

▶ When A and B are symmetric, if one is SPD, we can perform Cholesky on B, multiply A by the inverted factors, and diagonalize it:

$$\underbrace{\boldsymbol{L}^{-1}\boldsymbol{A}\boldsymbol{L}^{-T}}_{\tilde{\boldsymbol{A}}}\underbrace{\boldsymbol{L}^{T}\boldsymbol{X}}_{\tilde{\boldsymbol{X}}} = \underbrace{\boldsymbol{L}^{T}\boldsymbol{X}}_{\tilde{\boldsymbol{X}}}\boldsymbol{D}$$

Canonical Forms Generalized Eigenvalue Problem

- For nonsingular $U, V, A \lambda B = U(J \lambda I)V^T$ where J is in Jordan form
- ▶ For some unitary $P, Q, A = PT_AQ^H$ and $B = PT_BQ^H$ where T_A and T_B are triangular

Nonlinear Eigenvalue Problem

lacktriangle In a polynomial eigenvalue problem, we seek solutions λ,x to

$$\sum_{i=0}^d \lambda^i m{A}_i m{x} = m{0}$$

Assuming for simplicity that $A_d = I$, solutions are given by solving the matrix eigenvalue problem with the block-companion matrix

$$egin{bmatrix} -oldsymbol{A}_{d-1} & \cdots & -oldsymbol{A}_0 \ oldsymbol{I} & oldsymbol{0} & \cdots \ & \ddots & \ddots \end{bmatrix}$$