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Solving Nonlinear Equations
I Solving (systems of) nonlinear equations corresponds to root finding:

I f(x∗) = 0 univariate nonlinear function

I f(x∗) = 0 multivariate, scalar-valued nonlinear function

I f(x∗) = 0 multivariate, vector-valued nonlinear function

I Root-finding can be reduced to finding a fixed-point g(x∗) = x∗:

I various alternatives exist, including simple g(x) = x− f(x)

I Newton’s method uses (with Jacobian (Jf (x))ij =
δfi
δxj

(x)),

g(x) = x− f(x)/f ′(x) or more generally g(x) = x− J−1f (x)f(x)

which has the property g′(x∗) = 0, or more generally Jg(x) = O



Nonexistence and Nonuniqueness of Solutions

I Solutions do not generally exist and are not generally unique, even in the
univariate case:
Consider functions that are strictly greater than zero or have many zeros.

I Solutions in the multivariate case correspond to intersections of
hypersurfaces:
The zeros of each equation define a hypersurface in Rn, in the linear case,
there are hyperplanes. Intersections of hypersurfaces for many equations,
define the solutions, which are roots of all equations.
Consider that two curves can intersect at many points in space. Two
hypersurfaces in three-dimensional space may not intersect or may have
multiple curves of intersection.



Conditions under which Solutions Exist
I Intermediate value theorem for univariate problems: If for x < y,
sign(f(x)) 6= sign(f(y)) and f is continuous, ∃x∗∈[x, y], f(x∗) = 0.

I Inverse function theorem Jf (x) is nonsingular at x if f(x) = 0:

Jf (x) =

 df1
dx1

(x) · · · df1
dxn

(x)
...

...
dfm
dx1

(x) · · · dfm
dxn

(x)


If Jf (x

∗) is singular, ∃s 6= 0 so that Jf (x
∗)s = 0, which means a linear

approximation cannot distinguish the soltion from a nearby point, x∗ + s,
which may or may not be another root.

I If a function has a unique fixed point in a given closed domain if it is is
contractive and contained in that domain,

||g(x)− g(z)|| ≤ γ||x− z||

Contained implies that in the domain S, for any x ∈ S, g(x) ∈ S, while
contractive implies that the function is Lipschitz continuous in S.



Multiple Roots and Degeneracy

I If x∗ is a root of f with multiplicity m,
f(x∗) = f ′(x∗) = f ′′(x∗) = · · · = f (m−1)(x∗) = 0:
For some t(0)(x) we have that

f(x) = (x− x∗)mt(0)(x)

f ′(x) = (x− x∗)m−1t(0)(x) + (x− x∗)mt(0)′(x)
≡ (x− x∗)m−1t(1)(x)

f (m−1)(x) = (x− x∗)t(m−1)(x)

where t(i) = t(i−1)(x)− (x− x∗)t(i−1)′(x)
I Increased multiplicity a�ects conditioning and convergence:

When a root x∗ non-unit multiplicity, f ′(x∗) = 0, so in a sense the problem of
finding a particular root when two roots coincide is ill-posed.



Conditioning of Nonlinear Equations

I Generally, we take interest in the absolute rather than relative conditioning
of solving f(x) = 0:
The sensitivity of solving a nonlinear equation, corresponds to the
perturbation to the root due to a perturbation that has a bounded e�ect on
the function. Without further knowledge of the specification of the function, it
only makes sense to consider absolute perturbations to f , since a relative
perturbation is undefined for f(x∗) = 0.

I The condition number of finding a root x∗ of f is 1/|f ′(x∗)| or ||J−1f (x∗)||:
If we change f by a factor of at most δf at any point in the function while
maintaining continuity, the root will shift by at most |δf |/|f ′(x∗)| assuming
|δf | is su�ciently small. This relationship is the converse of conditioning in
functional evalution, where a perturbation to input x, results in a perturbation
of at most κabs(f) = |f ′(x)| larger to the function value.



Bisection Algorithm

I Assume we know the desired root exists in a bracket [a, b] and
sign(f(a)) 6= sign(f(b)):

I note that multiple roots may exist in [a, b]
I the condition of opposing sign is restrictive, we may want to find a root without

knowing where a function is negative

I Bisection subdivides the interval by a factor of two at each step by
considering f(ck) at ck = (ak + bk)/2):

[ak+1, bk+1] =

{
[ck, bk] : sign(f(ak)) = sign(f(ck))

[ak, ck] : sign(f(bk)) = sign(f(ck))



Rates of Convergence

I Let xk be the kth iterate and ek = xk = x∗ be the error, bisection obtains
linear convergence, limk→∞ ||ek||/||ek−1|| ≤ C:
In bisection, working with the natural error bound given by bracket size,

ek = bk − ak =
1

2
(bk−1 − ak−1) =

1

2
ek−1,

so bisection achieve linear convergence with C = 1/2. With linear
convergence, error ek ≤ ε is achieved after O(logC(1/ε)) steps.

I rth order convergence implies that ||ek||/||ek−1||r ≤ C
rth order convergence implies the number of digits of correctness increases
by a factor of r at each step. With rth order convergence, error ek ≤ ε is
achieved after O(logr(log(1/ε))) steps. Having achieved superlinear
convergence (r > 1), methods di�er only by constant factors in complexity.



Convergence of Fixed Point Iteration
I Fixed point iteration: xk+1 = g(xk) is locally linearly convergent if for
x∗ = g(x∗), we have |g′(x∗)| < 1:
By applying the intermediate value theorem to g′(x) we can bound the error,

ek+1 = xk+1 − x∗ = g(xk)− g(x∗)
= g′(θk)(xk − x∗)
= g′(θk)ek, θk ∈ [xk, x

∗]

I It is quadratically convergent if g′(x∗) = 0:
Taylor’s theorem allows us to show quadratic convergence,

ek+1 = xk+1 − x∗ = g(xk)− g(x∗)
= g′′(ζk)(xk − x∗)2/2
= g′′(ζk)|ek|2/2, ζk ∈ [xk, x

∗]



Newton’s Method

I Newton’s method is derived from a Taylor series expansion of f at xk:

f(x) = f(xk) + f ′(xk)(x− xk)︸ ︷︷ ︸
secant line approximation

+(1/2!)f ′′(xk)(x− xk)2 + · · ·

I Newton’s method is quadratically convergent if started su�ciently close to
x∗ so long as f ′(x∗) 6= 0:

f(x∗)−f(xk+1) ≤ (1/2)f ′′(xk)(x−xk)2+· · · = (1/2)f ′′(ξk)||ek||2, ξk ∈ [xk, x
∗]



Secant Method
I The Secant method approximates f ′(xk) ≈ f(xk)−f(xk−1)

xk−xk−1
:

Usually this method is the cheapest approximation possible, since function
values f(xk) and f(xk−1) are already available. Approximation quality
depends on magnitude f(xk)− f(xk−1) and xk − xk−1. If the two points are
far apart, the derivative approximation may be bad locally, while if they are
very close we have to take care in handling cancellation. A well-chosen
finite-di�erence step at each xk provides a more robust approximation, but
requires another function evaluation.

I The convergence is superlinear but not quadratic:
The error will now depend on the previous two errors, since we are using the
previous two points, in simplified form,

ek ≤ ek−1ek−2
Now note log(ek) = log(ek−1) + log(ek−2) is the Fibonacci sequence, which
grows at a rate of r = (1 +

√
5)/2. Thus the (negative) exponent of the error

increases by a factor of r at each step, i.e. the convergence rate is r.



Nonlinear Tangential Interpolants

I Secant method uses a linear interpolant based on points f(xk), f(xk−1),
could use more points and higher-order interpolant:
Have points (x0, f(x0)), . . . , (xk, f(xk)) can fit polynomial to p(xi) = f(xi) for
some subset of points xi ∈ S ⊆ {x0, . . . xk}.

I Quadratic interpolation (Muller’s method) achieves convergence rate
r ≈ 1.84:
Quadratic interpolation requires three points xk−2, xk−1, and xk.



Achieving Global Convergence

I Hybrid bisection/Newton methods:
Given a bracket (interval), can proceed with bisection until bracket is small
then switch to Newton. Alternatively, can attempt Newton, check if it stays
within bracket (safeguard) and proceed with change only if it does.

I Bounded (damped) step-size:
Newton’s method gives us a direction. Decreasing the step size in that
direction trades o� convergence rate for reliability. We will study how step
sizes can be chosen in more detail in the context of optimization.


