CS 450: Numerical Anlaysis

Lecture 15
Chapter 6 Numerical Optimization
Secant Updating Methods and Basics of Numerical Optimization

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

March 9, 2018

Secant Updating Methods

In solving a nonlinear equation, seek approximate Jacobian $oldsymbol{J_f}(oldsymbol{x}_k)$ for each $oldsymbol{x}_k$

lacktriangle Find $m{B}_{k+1} = m{B}_k + m{\delta} m{B}_k pprox m{J}_{m{f}}(m{x}_{k+1})$, so as to approximate secant equation

$$egin{equation} egin{equation} egin{equati$$

Generally, the secant equation is underdetermined, as we usually need n finite-difference formulas to determine $J_f(x_k)$, so the secant updating methods find only approximate B_{k+1} , usually as a modification of B_k .

▶ *Broyden's method* is given by minimizing $||\delta B_k||_F$:

$$oldsymbol{\delta B}_k = rac{oldsymbol{\delta f} - oldsymbol{B}_k oldsymbol{\delta x}}{||oldsymbol{\delta x}||^2} oldsymbol{\delta x}^T$$

Note that δB_k is rank-1. Consequently, we can use the Sherman-Morrison formula to update B_{k+1}^{-1} with $O(n^2)$ work. Various other variants exist.

Newton-Like Methods

► Can dampen step-size to improve reliability of Newton or Broyden iteration:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{s}_k$$
 where $\alpha_k \leq 1$

can pick α_k so to ensure $||f(x_{k+1})|| < ||f(x_k)||$ or by doing a line-search to minimize $||f(x_k + \alpha_k s_k)||$.

▶ Trust region methods provide general step-size control: Establish/maintain/update region within which step is expected to be accurate. Pick each step to stay within trust region while minimizing $||f(x_{k+1})||$. Observe that the Newton-like generally seek to progress to a minima of $||f(x_{k+1})||$, and indeed much of the theory of these methods targets optimization.

Numerical Optimization

▶ Our focus will be on *continuous* rather than *combinatorial* optimization:

$$\min_{m{x}} f(m{x})$$
 subject to $m{g}(m{x}) = m{0}$ and $m{h}(m{x}) \leq m{0}$

where f is assumed to be differentiable. Without the constraints, i.e. if g = 0 and h = 0, the optimization problem is referred to as unconstrained.

▶ We consider linear, quadratic, and general nonlinear optimization problems: If f, g, and h are affine (linear and constant terms only) then we have linear programming problem. If f is quadratic while g and h are linear, then we have a quadratic programming problem, for which specialized methods exist. Generally, we have a nonlinear programming problem.

Local Minima and Convexity

Without knowledge of the analytical form of the function, numerical optimization methods at best achieve convergence to a *local* rather than *global* minimum:

If the input domain is infinite, we may never be able to find a starting point near the global minimum.

► A set is *convex* if it includes all points on any line, while a function is (strictly) convex if its (unique) local minimum is always a global minimum: Set S is convex if

$$\forall \boldsymbol{x}, \boldsymbol{y} \in S, \alpha \in [0, 1], \alpha \boldsymbol{x} + (1 - \alpha) \boldsymbol{y} \in S.$$

Function f is convex if

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

Existence of Local Minima

▶ *Level sets* are all points for which *f* has a given value, sublevel sets are all points for which the value of *f* is less than a given value:

$$L(z) = \{ \boldsymbol{x} : f(\boldsymbol{x}) = z \}$$
$$S(z) = \{ \boldsymbol{x} : f(\boldsymbol{x}) \le z \}$$

- ▶ If there exists a closed and bounded sublevel set in the domain of feasible points, then *f* has has a global minimum in that set:
 - Need a value z such that S(z) has finite size, is contiguous, and includes its own boundary.

Optimality Conditions

- ▶ If ${\boldsymbol x}$ is an interior point in the feasible domain and is a local minima, $\nabla f({\boldsymbol x}) = {\bf 0}$:
 - If $\nabla f(x)_i < 0$ an infinitesimal increment to x_i improves the solution, while if $\nabla f(x)_i > 0$ an infinitesimal decrement to x_i improves the solution.
- \blacktriangleright Critical points ${\pmb x}$ satisfy $\nabla f({\pmb x})=0$ and can be minima, maxima, saddle points:
 - For scalar function f, can distinguish the three by considering sign of f''(x).

Hessian Matrix

▶ To ascertain whether an interior point x for which $\nabla f(x) = 0$ is a local minima, consider the Hessian matrix

$$m{H}_f(m{x}) = m{J}_{
abla f}(m{x}) = egin{bmatrix} rac{d^2 f(m{x})}{dx_1^2} & \cdots & rac{d^2 f(m{x})}{dx_1 dx_n} \ dots & \ddots & dots \ rac{d^2 f(m{x})}{dx_n dx_1} & \cdots & rac{d^2 f(m{x})}{dx_n dx_n} \end{bmatrix}$$

The Hessian matrix is always symmetric.

▶ If x^* is a minima of f, then $H_f(x^*)$ is positive semi-definite:

If $H_f(x^*)$ is not positive semi-definite, there exists normalized vector s such that $s^T H_f(x^*) s < 0$, which means that for a sufficiently small α , $\hat{x} = x^* + \alpha s$ will have be a better solution, $f(\hat{x}) < f(x^*)$, since the gradient is zero at x^* and decreases for an infinitesimal perturbation of x^* in the direction of s.

Optimality on Feasible Region Border

▶ In equality-constrained optimization g(x) = 0, minimizers x^* are often found on the border of the feasible region (set of points satisfying constraints), in which case we must ensure any direction of decrease of f from x^* leads to an infeasible point, which gives us the condition:

$$\exists oldsymbol{\lambda} \in \mathbb{R}^n, \quad -
abla f(oldsymbol{x}^*) = oldsymbol{J}_{oldsymbol{g}}^T(oldsymbol{x}^*) oldsymbol{\lambda}$$

 λ are referred to as the Lagrange multipliers.

▶ Seek critical points in the Lagrangian function $\mathcal{L}(x, \lambda) = f(x) + \lambda^T g(x)$, described by the nonlinear equation,

$$abla \mathcal{L}(oldsymbol{x},oldsymbol{\lambda}) = egin{bmatrix}
abla f(oldsymbol{x}) + oldsymbol{J}_{oldsymbol{g}}^T(oldsymbol{x})oldsymbol{\lambda} \ g(oldsymbol{x}) \end{bmatrix} = oldsymbol{0}$$

Seeking λ that maximizes the global minimum of $\mathcal{L}(x,\lambda)$ defines the dual optimization problem.

Sensitivity and Conditioning

▶ The condition number of solving a nonlinear equations is $1/f'(x^*)$, however for a minimizer x^* , we have $f'(x^*) = 0$, so conditioning of optimization is inherently bad:

Consider perturbation of function values for a function that changes slowly near the minimum.

▶ To analyze worst case error, consider how far we have to move from a root x^* to perturb the function value by ϵ :

$$\epsilon = f(x^* + h) - f(x^*) = \underbrace{f'(x^*)h}_{0} + \frac{1}{2}f''(x^*)h^2 + O(h^3)$$

so the function value changes by $\frac{1}{2}f''(x^*)h^2$, which implies we need $h=O(\sqrt{\epsilon})$, i.e. a perturbation to the function value in the kth significant digit, could result in the solution changing in the k/2th significant digit.

Golden Section Search

▶ Given bracket [a,b] with a unique minimum (f is *unimodal* on the interval), if we consider points $f(x_1), f(x_2), a < x_1 < x_2 < b$, we can discard subinterval $[a,x_1]$ or $[x_2,b]$:

If $f(x_1) < f(x_2)$ consider only $[a, x_2]$, otherwise consider $[x_1, b]$.

Since one point remains in the interval, we seek to pick x_1 and x_2 so they can be reused in the next iteration:

For example, when $f(x_1) > f(x_2)$, x_2 is inside $[x_1, b]$ and we would like x_2 to serve as the x_1 for the next iteration.

▶ We must ensure that the scaled distance of x_2 from the start of the interval $[x_1, 1]$ is the same as the distance of x_1 from x_2 , so $\frac{x_2 - x_1}{1 - x_1} = x_1$:

We pick $x_2=1-x_1$, which gives $1-2x_1=x_1(1-x_1)$, a quadratic equation $x_1^2-3x_1+1=0$ with solution $x_1=(3-\sqrt{5})/2$.

Newton's Method for Optimization

► At each iteration, approximate function by quadratic and find minimum of quadratic function:

Pick quadratic function \hat{f} as first three terms of Taylor expansion of f about x_k , matching value and first two derivatives of f at x_k .

▶ The new approximate guess will be given by $x_{k+1} - x_k = -f'(x_k)/f''(x_k)$:

$$f(x_{k+1} - x_k) \approx \hat{f}(x_{k+1} - x_k) = f(x_k) + f'(x_k)(x_{k+1} - x_k) + \frac{1}{2}f''(x_k)(x_{k+1} - x_k)^2$$

since the function is quadratic, we can find its unique critical point to find its minima,

$$\hat{f}'(x_{k+1} - x_k) = f'(x_k) + f''(x_k)(x_{k+1} - x_k) = 0.$$