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Secant Updating Methods

In solving a nonlinear equation, seek approximate Jacobian J¢(xy) for each x;,
» Find B, = By, + 6By, =~ J¢(x141), SO as to approximate secant equation
Bii1(Tr1 — x) = f(@re1) — fxk)
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Generally, the secant equation is underdetermined, as we usually need n
finite-difference formulas to determine J¢(x)), so the secant updating
methods find only approximate By 1, usually as a modification of By.

» Broyden’s method is given by minimizing ||d By||r:

. (Sf — Bkdaz
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Note that d By, is rank-1. Consequently, we can use the Sherman-Morrison
formula to update B;_|, with O(n?) work. Various other variants exist.



Newton-Like Methods

» Can dampen step-size to improve reliability of Newton or Broyden iteration:

Tp+1 = T + Sk where o <1

can pick ay, so to ensure || f(xr+1)|| < ||f(x)|| or by doing a line-search to
minimize || f (z + agsg)||-

» Trust region methods provide general step-size control:

Establish/maintain/update region within which step is expected to be
accurate. Pick each step to stay within trust region while minimizing
||f(xxt1)||- Observe that the Newton-like generally seek to progress to a
minima of || f (xx+1)||, and indeed much of the theory of these methods
targets optimization.



Numerical Optimization

» Our focus will be on continuous rather than combinatorial optimization:

min f(x) subjectto g(x)=0 and h(x)<0

where f is assumed to be differentiable. Without the constraints, i.e. if g =0
and h = 0, the optimization problem is referred to as unconstrained.

» We consider linear, quadratic, and general nonlinear optimization problems:

If f, g, and h are affine (linear and constant terms only) then we have linear
programming problem. If f is quadratic while g and h are linear, then we
have a quadratic programming problem, for which specialized methods exist.
Generally, we have a nonlinear programming problem.



Local Minima and Convexity

» Without knowledge of the analytical form of the function, numerical
optimization methods at best achieve convergence to a /ocal rather than
global minimum:

If the input domain is infinite, we may never be able to find a starting point
near the global minimum.

» A setis convex if it includes all points on any line, while a function is
(strictly) convex if its (unique) local minimum is always a global minimum:

Set S is convex if
Ve,y € S,a € [0,1],az+ (1 —a)y € S.
Function f is convex if

flaz+ (1 —a)y) < af(z)+(1—a)f(y).



Existence of Local Minima

» Level sets are all points for which f has a given value, sublevel sets are all
points for which the value of f is less than a given value:

L {x:f
S(z) = {w: f(z) <z}

» If there exists a closed and bounded sublevel set in the domain of feasible
points, then f has has a global minimum in that set:

Need a value z such that S(z) has finite size, is contiguous, and includes its
own boundary.



Optimality Conditions

» If x is an interior point in the feasible domain and is a local minima,
Vf(x)=0:
IfVf(x); < 0 an infinitesimal increment to x; improves the solution, while if
V f(x); > 0 an infinitesimal decrement to x; improves the solution.

» Critical points «x satisfy V f(x) = 0 and can be minima, maxima, saddle
points:
For scalar function f, can distinguish the three by considering sign of f"(x).



Hessian Matrix

» To ascertain whether an interior point o for which Vf(x) = 0 is a local
minima, consider the Hessian matrix

d? f(x) d? f(x)
dac% T dr1dzn
Hy(x) = Jys(x) = | - :
2f@) . df(=)
dxndry dxpdxn

The Hessian matrix is always symmetric.

» If £* is a minima of f, then H(x*) is positive semi-definite:
If Hy(x*) is not positive semi-definite, there exists normalized vector s such
that sTHf(:c*)s < 0, which means that for a sufficiently small o, & = x* + as
will have be a better solution, f(&) < f(x*), since the gradient is zero at «*
and decreases for an infinitesimal perturbation of x* in the direction of s.



Optimality on Feasible Region Border

» In equality-constrained optimization g(x) = 0, minimizers =* are often found
on the border of the feasible region (set of points satisfying constraints), in
which case we must ensure any direction of decrease of f from x* leads to
an infeasible point, which gives us the condition:

IANER", —Vf(x*)=J (")
X are referred to as the Lagrange multipliers.
» Seek critical points in the Lagrangian function £(z, ) = f(z) + ATg(x),
described by the nonlinear equation,

T
VL) = | V@) g @A
g(x)
Seeking A that maximizes the global minimum of L(x, \) defines the dual
optimization problem.
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Sensitivity and Conditioning

» The condition number of solving a nonlinear equations is 1/f'(z*), however
for a minimizer z*, we have f’(z*) = 0, so conditioning of optimization is
inherently bad:

Consider perturbation of function values for a function that changes slowly
near the minimum.

» To analyze worst case error, consider how far we have to move from a root =*
to perturb the function value by e:

1
e= f(z*+h) — f(a*) = f'(a)h+= " (z*)h* + O(h?)
\—\0/—/ 2
so the function value changes by % f"(x*)h?, which implies we need

h = O(y/€), i.e. a perturbation to the function value in the kth significant digit,
could result in the solution changing in the k/2th significant digit.



Golden Section Search

» Given bracket [a, b] with a unique minimum (f is unimodal on the interval), if
we consider points f(z1), f(z2), a < z1 < x2 < b, we can discard subinterval
[a, x1] or [z2,b]:

If f(z1) < f(x2) consider only |a, x2|, otherwise consider [z, b].

» Since one point remains in the interval, we seek to pick z1 and x5 so they can
be reused in the next iteration:
For example, when f(x1) > f(x2), x2 is inside [z1,b] and we would like x5 to
serve as the x1 for the next iteration.

» We must ensure that the scaled distance of x5 from the start of the interval
[x1,1] is the same as the distance of x; from 0, so =% ml = x1:

We pick xo = 1 — x1, which gives 1 — 2z1 = z1(1 — xl), a quadratic equation
2?2 — 321 + 1 = 0 with solution z1 = (3 — /5)/2.



Newton’s Method for Optimization

» At each iteration, approximate function by quadratic and find minimum of
guadratic function:
Pick quadratic function f as first three terms of Taylor expansion of f about
x1, matching value and first two derivatives of f at xy.

» The new approximate guess will be given by x; 1 — z; = —f'(xx)/f" (xx):

F@pgr — ) = fzren — ) = flag) + (o) (@he —z) + %f”(l‘k)(fﬂkﬂ —x)?

since the function is quadratic, we can find its unique critical point to find its
minima,

S (@r — ) = f(2) + f (@r) (2pg1 — 21) = 0.



