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Secant Updating Methods
In solving a nonlinear equation, seek approximate Jacobian Jf (xk) for each xk

I Find Bk+1 = Bk + δBk ≈ Jf (xk+1), so as to approximate secant equation

Bk+1(xk+1 − xk︸ ︷︷ ︸
δx

) = f(xk+1)− f(xk)︸ ︷︷ ︸
δf

Generally, the secant equation is underdetermined, as we usually need n
finite-di�erence formulas to determine Jf (xk), so the secant updating
methods find only approximate Bk+1, usually as a modification of Bk.

I Broyden’s method is given by minimizing ||δBk||F :

δBk =
δf −Bkδx

||δx||2
δxT

Note that δBk is rank-1. Consequently, we can use the Sherman-Morrison
formula to update B−1k+1 with O(n2) work. Various other variants exist.



Newton-Like Methods

I Can dampen step-size to improve reliability of Newton or Broyden iteration:

xk+1 = xk + αksk where αk ≤ 1

can pick αk so to ensure ||f(xk+1)|| < ||f(xk)|| or by doing a line-search to
minimize ||f(xk + αksk)||.

I Trust region methods provide general step-size control:
Establish/maintain/update region within which step is expected to be
accurate. Pick each step to stay within trust region while minimizing
||f(xk+1)||. Observe that the Newton-like generally seek to progress to a
minima of ||f(xk+1)||, and indeed much of the theory of these methods
targets optimization.



Numerical Optimization

I Our focus will be on continuous rather than combinatorial optimization:

min
x
f(x) subject to g(x) = 0 and h(x) ≤ 0

where f is assumed to be di�erentiable. Without the constraints, i.e. if g = 0
and h = 0, the optimization problem is referred to as unconstrained.

I We consider linear, quadratic, and general nonlinear optimization problems:
If f , g, and h are a�ne (linear and constant terms only) then we have linear
programming problem. If f is quadratic while g and h are linear, then we
have a quadratic programming problem, for which specialized methods exist.
Generally, we have a nonlinear programming problem.



Local Minima and Convexity
I Without knowledge of the analytical form of the function, numerical

optimization methods at best achieve convergence to a local rather than
global minimum:
If the input domain is infinite, we may never be able to find a starting point
near the global minimum.

I A set is convex if it includes all points on any line, while a function is
(strictly) convex if its (unique) local minimum is always a global minimum:
Set S is convex if

∀x,y ∈ S, α ∈ [0, 1], αx+ (1− α)y ∈ S.

Function f is convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).



Existence of Local Minima

I Level sets are all points for which f has a given value, sublevel sets are all
points for which the value of f is less than a given value:

L(z) = {x : f(x) = z}

S(z) = {x : f(x) ≤ z}

I If there exists a closed and bounded sublevel set in the domain of feasible
points, then f has has a global minimum in that set:
Need a value z such that S(z) has finite size, is contiguous, and includes its
own boundary.



Optimality Conditions

I If x is an interior point in the feasible domain and is a local minima,
∇f(x) = 0:
If ∇f(x)i < 0 an infinitesimal increment to xi improves the solution, while if
∇f(x)i > 0 an infinitesimal decrement to xi improves the solution.

I Critical points x satisfy ∇f(x) = 0 and can be minima, maxima, saddle
points:
For scalar function f , can distinguish the three by considering sign of f ′′(x).



Hessian Matrix
I To ascertain whether an interior point x for which ∇f(x) = 0 is a local

minima, consider the Hessian matrix

Hf (x) = J∇f (x) =


d2f(x)
dx2

1
· · · d2f(x)

dx1dxn

... . . . ...
d2f(x)
dxndx1

· · · d2f(x)
dxndxn


The Hessian matrix is always symmetric.

I If x∗ is a minima of f , then Hf (x
∗) is positive semi-definite:

If Hf (x
∗) is not positive semi-definite, there exists normalized vector s such

that sTHf (x
∗)s < 0, which means that for a su�ciently small α, x̂ = x∗ + αs

will have be a better solution, f(x̂) < f(x∗), since the gradient is zero at x∗
and decreases for an infinitesimal perturbation of x∗ in the direction of s.



Optimality on Feasible Region Border
I In equality-constrained optimization g(x) = 0, minimizers x∗ are often found

on the border of the feasible region (set of points satisfying constraints), in
which case we must ensure any direction of decrease of f from x∗ leads to
an infeasible point, which gives us the condition:

∃λ ∈ Rn, −∇f(x∗) = JT
g (x

∗)λ

λ are referred to as the Lagrange multipliers.
I Seek critical points in the Lagrangian function L(x,λ) = f(x) + λTg(x),

described by the nonlinear equation,

∇L(x,λ) =
[
∇f(x) + JT

g (x)λ

g(x)

]
= 0

Seeking λ that maximizes the global minimum of L(x,λ) defines the dual
optimization problem.



Sensitivity and Conditioning

I The condition number of solving a nonlinear equations is 1/f ′(x∗), however
for a minimizer x∗, we have f ′(x∗) = 0, so conditioning of optimization is
inherently bad:
Consider perturbation of function values for a function that changes slowly
near the minimum.

I To analyze worst case error, consider how far we have to move from a root x∗
to perturb the function value by ε:

ε = f(x∗ + h)− f(x∗) = f ′(x∗)h︸ ︷︷ ︸
0

+
1

2
f ′′(x∗)h2 +O(h3)

so the function value changes by 1
2f
′′(x∗)h2, which implies we need

h = O(
√
ε), i.e. a perturbation to the function value in the kth significant digit,

could result in the solution changing in the k/2th significant digit.



Golden Section Search

I Given bracket [a, b] with a unique minimum (f is unimodal on the interval), if
we consider points f(x1), f(x2), a < x1 < x2 < b, we can discard subinterval
[a, x1] or [x2, b]:
If f(x1) < f(x2) consider only [a, x2], otherwise consider [x1, b].

I Since one point remains in the interval, we seek to pick x1 and x2 so they can
be reused in the next iteration:
For example, when f(x1) > f(x2), x2 is inside [x1, b] and we would like x2 to
serve as the x1 for the next iteration.

I We must ensure that the scaled distance of x2 from the start of the interval
[x1, 1] is the same as the distance of x1 from 0, so x2−x1

1−x1
= x1:

We pick x2 = 1− x1, which gives 1− 2x1 = x1(1− x1), a quadratic equation
x21 − 3x1 + 1 = 0 with solution x1 = (3−

√
5)/2.



Newton’s Method for Optimization

I At each iteration, approximate function by quadratic and find minimum of
quadratic function:
Pick quadratic function f̂ as first three terms of Taylor expansion of f about
xk, matching value and first two derivatives of f at xk.

I The new approximate guess will be given by xk+1 − xk = −f ′(xk)/f ′′(xk):

f(xk+1−xk) ≈ f̂(xk+1−xk) = f(xk)+f
′(xk)(xk+1−xk)+

1

2
f ′′(xk)(xk+1−xk)2

since the function is quadratic, we can find its unique critical point to find its
minima,

f̂ ′(xk+1 − xk) = f ′(xk) + f ′′(xk)(xk+1 − xk) = 0.


