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Constrained Optimization Problems
I We now return to the general case of constrained optimization problems:

min
x
f(x) subject to g(x) = 0 and h(x) ≤ 0

When f is quadratic, while h, g is linear, this is a quadratic optimization
problem.

I Generally, we will seek to reduce constrained optimization problems to a
series of unconstrained optimization problems:

I sequential quadratic programming: solve an unconstrained quadratic program
at each iteration,

I penalty-based methods: solve a series of more complicated (more
ill-conditioned) unconstrained optimization problems,

I active set methods: define sequence of optimization problems with inequality
constrained ignored or treated as equality constraints.



Lagrangian Duality
I The Lagrangian function with constraints g(x) = 0 and h(x) ≤ 0 is

L(x,λ) = f(x) + λT
[
h(x)
g(x)

]
L(x,λ) = f(x) + λT1 h(x) + λ

T
2 g(x)

I The Lagrangian dual problem is an unconstrained optimization problem:

max
λ

q(λ), q(λ) =

{
minx L(x,λ) if λ ≥ 0

−∞ otherwise

Note that the unconstrained optimality condition ∇q(λ∗) = 0, implies

max

(
λ∗,

[
h(x)
g(x)

])
= 0

when λ∗i = 0, we say the ith constraint is inactive.



Constrained Optimality
I In equality-constrained optimization g(x) = 0, minimizers x∗ are on the

border of the feasible region (set of points satisfying constraints), in which
case we must ensure any direction of decrease of f from x∗ leads to an
infeasible point, which gives us the condition:

∃λ ∈ Rn, −∇f(x∗) = JTg (x∗)λ

λ are referred to as the Lagrange multipliers.
I Seek critical points in the Lagrangian function L(x,λ) = f(x) + λTg(x),

described by the nonlinear equation,

∇L(x,λ) =
[
∇f(x) + JTg (x)λ

g(x)

]
= 0

Seeking λ that maximizes the global minimum of L(x,λ) defines the dual
optimization problem.



Sequential Quadratic Programming
I Sequential quadratic programming (SQP) corresponds to using Newton’s

method to solve the nonlinear equations,

∇L(x,λ) =
[
∇f(x) + JTg (x)λ

g(x)

]
= 0

At each iteration, we compute
[
xk+1

λk+1

]
=

[
xk
λk

]
+ sk by solving

JL(xk,λk)sk = −∇L(xk,λk) = −
[
∇f(xk) + JTg (xk)λk

g(xk)

]
where

JL(xk,λk) =

[
B(xk,λk) JTg (xk)

Jg(xk) 0

]
with B(x,λ) =Hf (x) +

m∑
i=1

λiHgi(x)



Quadratic Programming Problems

I An equality-constrained quadratic programming problem has the form

min
x
f(x), f(x) =

1

2
xTQx+ cTx subject to Ax = b

Its first-order optimality condition in the unconstrained case is

0 = ∇f(x) = Qx+ c ⇒ Qx = −c

and in the constrained case, becomes[
Q AT

A 0

] [
x
λ

]
= −

[
c
b

]
This allows us to observe, that at the kth iteration SQP solves a QP with
Q = B(xk,λk), A = Jg(xk), c = ∇f(xk) + JTg (xk), and b = g(xk).



Steepest Descent for Quadratic Programming
I Near the minima, all smooth nonlinear programming problems look like

quadratic programming problems, where Q converges to the Hessian at the
minima,Hf (x

∗).

I Consequently, we can analyze local convergence of methods by considering
their convergence for a QP, e.g. for steepest descent:
Assume b = 0 and c = 0, then we have ∇f(x) = Qx. Consequently, steepest
descent will seek a step-size αk to perform the step

xk+1 = xk − αkQxk = (I − αkQ)xk

for this fixed-point iteration to converge, it su�ces that αk < 2/λmax(Q). The
optimal value can be shown to be α∗ = 2/(λmax(Q) + λmin(Q)), leading to
convergence rate

||ek+1|| =
κ(Q)− 1

κ(Q) + 1
||ek||



Gradient Methods with Extrapolation

I We can improve the constant in the linear rate of convergence of steepest
descent, by leveraging extrapolation methods, which consider two previous
iterates (using momentum):

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1)

I The heavy ball, which uses constant αk = α and βk = β, achieves better
convergence than steepest descent:

||ek+1|| =
√
κ(Q)− 1√
κ(Q) + 1

||ek||

Nesterov’s gradient optimization method is another instance of an
extrapolation method, and provides further optimality guarantees.



Conjugate Gradient Method
I The conjugate gradient method is capable of making the optimal choice of αk

and βk at each iteration of an extrapolation method:

(αk, βk) = argmin
αk,βk

[
f
(
xk − αk∇f(xk) + βk(xk − xk−1)

)]
For quadratic programming problems, conjugate gradient is an optimal 1st
order method, converging in n iterations.

I Generally conjugate gradient methods perform a sequence of line
minimizations in n directions that are Q-orthogonal:
A parallel tangents implementation of the method proceeds as follows

I Perform a step of steepest descent to generate x̂k from xk

I Generate xk+1 by minimizing over the line passing through xk and x̂k

Each conjugate direction is guaranteed to be Q-orthogonal to previous
directions by a recurrence argument similar to that of Lanczos iteration.


