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Sequential Quadratic Programming
I Sequential quadratic programming (SQP) solves a constrained quadratic

program at the kth step:
We approximate Lagrangian function Lf (x,λ) = f(x) + λTg(x) by taking its
Taylor expansion in x and λ:

q(xk + s,λk + δ) =Lf (xk,λk) + sT (∇f(xk) + JTg (xk)λk) +
1

2
sTB(xk)s

+ δ(Jg(xk)s+ g(xk))

where we can minimize over s and δ while ignoring the constant term
Lf (xk,λk). This unconstrained quadratic program corresponds to the
Lagrangian form of the constrained quadratic program

max
s
sT (∇f(xk) + JTg (xk)λk) +

1

2
sTB(xk)s

with constraint Jg(xk)s = −g(xk).



Solving Quadratic Programs

I Newton’s method for optimization can solve the quadratic program with a
single step:
Quadratic approximation is exact for an unconstrained QP. However,
Newton’s method forces us to form and invert Hf (xk), which require O(n3)
cost and O(n2) storage.

I The conjugate gradient method provides an e�ective way of solving QPs
iteratively:
A parallel tangents implementation of the method proceeds as follows

I Perform a step of steepest descent to generate x̂k from xk

I Generate xk+1 by minimizing over the line passing through xk−1 and x̂k

Each conjugate direction is guaranteed to be A-orthogonal to previous
directions by a recurrence argument similar to that of Lanczos iteration.



Conjugate Gradient as a Krylov Subspace Method
I Generally, Krylov subspaces describe the information available from k

matrix-vector products, and can be used to find an approximation xk to the
minima of cTx− xTAx:
Recall the Krylov subspace is defined as Kr = span(x0,Ax0, . . . ,A

r−1x0), so
our goal is to select a good xk ∈ Kr:

I there is insu�cient information to minimize ||xk − x∗||22
I minimum-residual methods (MINRES/GMRES) minimize residual ||cT −Axk||22
I conjugate gradient methods minimize residual in A−1 norm
||cT −Axk||2A−1 = (cT −Axk)

TA−1(cT −Axk)

I Conjugate gradient can be derived from vectors generated by the Lanczos
algorithm for symmetric (positive-definite) A, yielding

xk = QkT
−1
k e1||c||2 if x0 = c

Minimization follows from the fact that we minimize the projection of the
residual onto Q, namely QTr, since

QT (c−Ax) = e1||c||2 −QTAQ︸ ︷︷ ︸
T

T−1e1||c||2 = 0



Conjugate Gradient Properties

I Each iteration of conjugate gradient has cost proportional to a matrix-vector
product:

I Lanczos generates each vector qk+1 by orthogonalizing Aqk to qk−1 and qk
(three term recurrence)

I Note that the directions of change qk+1 and qk−1 are A-orthogonal since

qTk+1Aqk−1 = qTk+1(αqk − βqk−1 − γqk−2) = 0

I Conjugate gradient method obtained by transforming recurrence for qk into
recurrence for xk, requiring storage of 4 vectors

I Conjugate gradient is especially e�cient when the matrix has a sparse or
implicit representation:
Requires only ability to perform matrix-vector product and store O(1) vectors.



Active Set Methods
I To use SQP for an inequality constrained optimization problem, consider at

each iteration an active set of constraints:
A constraint is active if the current iterate is at a boundary satisfies the
inequality constraint as an equality (i.e. current position is at boundary
generated by constraint).

I The Karush-Kuhn-Tucker (KKT) optimality conditions given the generalized
Lagrangian function L(x,µ,ν) = f(x) + µTg(x) + νTh(x) are

∇xL(x,λ) = 0

g(x) = 0

h(x) ≤ 0

ν ≥ 0

νTh(x) = 0

at an optimal point, we must have that for either the ith inequality constraint
is active, so hi(x) = 0 or it is inactive, but its Lagrange multiplier νi = 0.



Penalty Functions

I We can reduce constrained optimization problems to unconstrained ones by
modifying the objective function. Penalty functions are e�ective for equality
constraints g(x) = 0:

φρ(x) = f(x) +
1

2
ρg(x)Tg(x)

is a simple merit function, and its solutions x∗ρ satisfy limρ→∞ x
∗
ρ = x

∗.
However, the Hessian of φρ becomes increasingly ill-conditioned for large ρ,
leading to slow convergence.

I The augmented Lagrangian function provides a more numerically robust
approach:

Lρ(x) = f(x) + λTg(x) +
1

2
ρg(x)Tg(x)



Barrier Functions
I A drawback of penalty function methods is that they can produce infeasible

approximate solutions, which is problematic if the objective function is only
defined in the feasible region:
Moreover, the merit and augmented Lagrangian functions only make sense
for equality constraints.

I Barrier functions provide an e�ective way (interior point methods) of
working with inequality constraints h(x) ≤ 0:
Inverse barrier function:

φµ(x) = f(x)− µ
m∑
i=1

1

hi(x)

Logarithmic barrier function:

φµ(x) = f(x)− µ
m∑
i=1

log(−hi(x))

in theory with su�ciently small steps we have x∗µ → x∗ as µ→ 0


