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Sequential Quadratic Programming

» Sequential quadratic programming (SQP) solves a constrained quadratic
program at the kth step:

We approximate Lagrangian function L¢(x,X) = f(x) + AT g(z) by taking its
Taylor expansion in x and X:

1
q(@p + 8, Mp + 8) =L (g, Aie) + 87 (V () + I (@) A) + §STB(96k)S
+ 6(Jg(zr)s + g(zk))
where we can minimize over s and & while ignoring the constant term

L¢(xy, A). This unconstrained quadratic program corresponds to the
Lagrangian form of the constrained quadratic program

max 57 (V(g) + I] (2) M) + 55 Blay)s

with constraint Jg(x)s = —g(x).



Solving Quadratic Programs

» Newton’s method for optimization can solve the quadratic program with a
single step:
Quadratic approximation is exact for an unconstrained QP. However,
Newton’s method forces us to form and invert H(z;,), which require O(n?)
cost and O(n?) storage.

» The conjugate gradient method provides an effective way of solving QPs
iteratively:
A parallel tangents implementation of the method proceeds as follows

» Perform a step of steepest descent to generate &j, from xy,
» Generate xy1 by minimizing over the line passing through x,_, and &

Each conjugate direction is guaranteed to be A-orthogonal to previous
directions by a recurrence argument similar to that of Lanczos iteration.



Conjugate Gradient as a Krylov Subspace Method

» Generally, Krylov subspaces describe the information available from &
matrix-vector products, and can be used to find an approximation x;, to the
minima of ¢’z — 27 Ax:

Recall the Krylov subspace is defined as K, = span(xg, Axo, ..., A" 'x), so
our goal is to select a good x;, € K,
» there is insufficient information to minimize ||z; — x*||3
» minimum-residual methods (MINRES/GMRES) minimize residual ||c! — Axy||3
» conjugate gradient methods minimize residual in A" norm
lle" — Azy|[4 -1 = (¢! — Azy)T A7 (T — Axy,)

» Conjugate gradient can be derived from vectors generated by the Lanczos

algorithm for symmetric (positive-definite) A, yielding

T — Qka_IBIHCHQ if rg—=2=C
Minimization follows from the fact that we minimize the projection of the
residual onto Q, namely Q™'r, since
QT(c — Ax) = eq|c||2 — QTAQ T7161|’CH2 =0
T



Conjugate Gradient Properties

» Each iteration of conjugate gradient has cost proportional to a matrix-vector
product:

» Lanczos generates each vector qi.1 by orthogonalizing Aq. to q;—1 and gy,
(three term recurrence)
» Note that the directions of change qi.1 and q;_1 are A-orthogonal since

Q1 Agi—1 = @11 (g — Bqr—1 — Yqr—2) =0
» Conjugate gradient method obtained by transforming recurrence for q; into

recurrence for xy, requiring storage of 4 vectors

» Conjugate gradient is especially efficient when the matrix has a sparse or
implicit representation:

Requires only ability to perform matrix-vector product and store O(1) vectors.



Active Set Methods

» To use SQP for an inequality constrained optimization problem, consider at
each iteration an active set of constraints:

A constraint is active if the current iterate is at a boundary satisfies the
inequality constraint as an equality (i.e. current position is at boundary
generated by constraint).

» The Karush-Kuhn-Tucker (KKT) optimality conditions given the generalized
Lagrangian function £(z, u,v) = f(x) + ug(x) + vTh(z) are
VazLl(x,A) =0
g(x) =0
h(x) <0
v>0
vih(z) =0
at an optimal point, we must have that for either the ith inequality constraint
is active, so h;(x) = 0 or it is inactive, but its Lagrange multiplier v; = 0.



Penalty Functions

» We can reduce constrained optimization problems to unconstrained ones by
modifying the objective function. Penalty functions are effective for equality
constraints g(x) = 0:

bpl) = §(@) + 3pg(@)"g(x)

is a simple merit function, and its solutions x;, satisfy lim,_,o @, = x*.
However, the Hessian of ¢, becomes increasingly ill-conditioned for large p,

leading to slow convergence.

» The augmented Lagrangian function provides a more numerically robust
approach:

Lo(@) = f(w) + Ag(x) + 5 pa(e) g(w)



Barrier Functions

» A drawback of penalty function methods is that they can produce infeasible
approximate solutions, which is problematic if the objective function is only
defined in the feasible region:

Moreover, the merit and augmented Lagrangian functions only make sense
for equality constraints.

» Barrier functions provide an effective way (interior point methods) of
working with inequality constraints h(x) < 0:
Inverse barrier function:

|
ou(x) = f(x) —
) = F@) =Y

Logarithmic barrier function:

Su(@) = f(m) — 1Y _ log(—hi(w))
=1

in theory with sufficiently small steps we have x;, — x* as u — 0



