CS 450: Numerical Anlaysis

Lecture 18
Chapter 6 Numerical Optimization
Conjugate Gradient and Constrained Optimization

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

March 27, 2018

Sequential Quadratic Programming

► Sequential quadratic programming (SQP) solves a constrained quadratic program at the kth step:

We approximate Lagrangian function $\mathcal{L}_f(x, \lambda) = f(x) + \lambda^T g(x)$ by taking its Taylor expansion in x and λ :

$$q(\boldsymbol{x}_k + \boldsymbol{s}, \boldsymbol{\lambda}_k + \boldsymbol{\delta}) = \mathcal{L}_f(\boldsymbol{x}_k, \boldsymbol{\lambda}_k) + \boldsymbol{s}^T (\nabla f(\boldsymbol{x}_k) + \boldsymbol{J}_{\boldsymbol{g}}^T(\boldsymbol{x}_k) \boldsymbol{\lambda}_k) + \frac{1}{2} \boldsymbol{s}^T \boldsymbol{B}(\boldsymbol{x}_k) \boldsymbol{s} + \boldsymbol{\delta} (\boldsymbol{J}_{\boldsymbol{g}}(\boldsymbol{x}_k) \boldsymbol{s} + \boldsymbol{g}(\boldsymbol{x}_k))$$

where we can minimize over s and δ while ignoring the constant term $\mathcal{L}_f(\boldsymbol{x}_k, \boldsymbol{\lambda}_k)$. This unconstrained quadratic program corresponds to the Lagrangian form of the constrained quadratic program

$$\max_{oldsymbol{s}} oldsymbol{s}^T (
abla f(oldsymbol{x}_k) + oldsymbol{J}_{oldsymbol{g}}^T(oldsymbol{x}_k) oldsymbol{\lambda}_k) + rac{1}{2} oldsymbol{s}^T oldsymbol{B}(oldsymbol{x}_k) oldsymbol{s}_k$$

with constraint $J_q(x_k)s = -g(x_k)$.

Solving Quadratic Programs

Newton's method for optimization can solve the quadratic program with a single step:

Quadratic approximation is exact for an unconstrained QP. However, Newton's method forces us to form and invert $\mathbf{H}_f(\mathbf{x}_k)$, which require $O(n^3)$ cost and $O(n^2)$ storage.

► The conjugate gradient method provides an effective way of solving QPs iteratively:

A parallel tangents implementation of the method proceeds as follows

- lacktriangle Perform a step of steepest descent to generate $\hat{m{x}}_k$ from $m{x}_k$
- lacksquare Generate x_{k+1} by minimizing over the line passing through x_{k-1} and \hat{x}_k

Each conjugate direction is guaranteed to be ${\bf A}$ -orthogonal to previous directions by a recurrence argument similar to that of Lanczos iteration.

Conjugate Gradient as a Krylov Subspace Method

▶ Generally, Krylov subspaces describe the information available from k matrix-vector products, and can be used to find an approximation x_k to the minima of $c^Tx - x^TAx$:

Recall the Krylov subspace is defined as $\mathcal{K}_r = \text{span}(\boldsymbol{x}_0, \boldsymbol{A}\boldsymbol{x}_0, \dots, \boldsymbol{A}^{r-1}\boldsymbol{x}_0)$, so our goal is to select a good $\boldsymbol{x}_k \in \mathcal{K}_r$:

- there is insufficient information to minimize $||x_k x^*||_2^2$
- lacktriangleright minimum-residual methods (MINRES/GMRES) minimize residual $||oldsymbol{c}^T oldsymbol{A} oldsymbol{x}_k||_2^2$
- lacktriangledown conjugate gradient methods minimize residual in $m{A}^{-1}$ norm $||m{c}^T m{A} m{x}_k||_{m{A}^{-1}}^2 = (m{c}^T m{A} m{x}_k)^T m{A}^{-1} (m{c}^T m{A} m{x}_k)$
- ► Conjugate gradient can be derived from vectors generated by the Lanczos algorithm for symmetric (positive-definite) A, yielding

$$oldsymbol{x}_k = oldsymbol{Q}_k oldsymbol{T}_k^{-1} oldsymbol{e}_1 ||oldsymbol{c}||_2 \quad ext{if} \quad oldsymbol{x}_0 = oldsymbol{c}$$

Minimization follows from the fact that we minimize the projection of the residual onto Q, namely $Q^T r$, since

$$m{Q}^T(m{c}-m{A}m{x}) = m{e}_1||m{c}||_2 - \underbrace{m{Q}^Tm{A}m{Q}}_{m{T}}m{T}^{-1}m{e}_1||m{c}||_2 = m{0}$$

Conjugate Gradient Properties

- Each iteration of conjugate gradient has cost proportional to a matrix-vector product:
 - Lanczos generates each vector q_{k+1} by orthogonalizing Aq_k to q_{k-1} and q_k (three term recurrence)
 - lacktriangle Note that the directions of change $oldsymbol{q}_{k+1}$ and $oldsymbol{q}_{k-1}$ are $oldsymbol{A}$ -orthogonal since

$$\boldsymbol{q}_{k+1}^T \boldsymbol{A} \boldsymbol{q}_{k-1} = \boldsymbol{q}_{k+1}^T (\alpha \boldsymbol{q}_k - \beta \boldsymbol{q}_{k-1} - \gamma \boldsymbol{q}_{k-2}) = 0$$

- ightharpoonup Conjugate gradient method obtained by transforming recurrence for q_k into recurrence for x_k , requiring storage of 4 vectors
- Conjugate gradient is especially efficient when the matrix has a sparse or implicit representation:
 - Requires only ability to perform matrix-vector product and store $\mathcal{O}(1)$ vectors.

Active Set Methods

- ► To use SQP for an inequality constrained optimization problem, consider at each iteration an *active set* of constraints:
 - A constraint is active if the current iterate is at a boundary satisfies the inequality constraint as an equality (i.e. current position is at boundary generated by constraint).
- The Karush-Kuhn-Tucker (KKT) optimality conditions given the generalized Lagrangian function $\mathcal{L}(x, \mu, \nu) = f(x) + \mu^T q(x) + \nu^T h(x)$ are

$$egin{aligned}
abla_x \mathcal{L}(x, oldsymbol{\lambda}) &= \mathbf{0} \ g(x) &= \mathbf{0} \ h(x) &\leq \mathbf{0} \ oldsymbol{
u} &\geq \mathbf{0} \
oldsymbol{
u}^T h(x) &= \mathbf{0} \end{aligned}$$

at an optimal point, we must have that for either the *i*th inequality constraint is active, so $h_i(\mathbf{x}) = \mathbf{0}$ or it is inactive, but its Lagrange multiplier $\nu_i = 0$.

Penalty Functions

• We can reduce constrained optimization problems to unconstrained ones by modifying the objective function. *Penalty* functions are effective for equality constraints g(x) = 0:

$$\phi_{
ho}(oldsymbol{x}) = f(oldsymbol{x}) + rac{1}{2}
hooldsymbol{g}(oldsymbol{x})^Toldsymbol{g}(oldsymbol{x})$$

is a simple merit function, and its solutions x_{ρ}^* satisfy $\lim_{\rho\to\infty} x_{\rho}^* = x^*$. However, the Hessian of ϕ_{ρ} becomes increasingly ill-conditioned for large ρ , leading to slow convergence.

► The augmented Lagrangian function provides a more numerically robust approach:

$$\mathcal{L}_{
ho}(oldsymbol{x}) = f(oldsymbol{x}) + oldsymbol{\lambda}^T oldsymbol{g}(oldsymbol{x}) + rac{1}{2}
ho oldsymbol{g}(oldsymbol{x})^T oldsymbol{g}(oldsymbol{x})$$

Barrier Functions

► A drawback of penalty function methods is that they can produce infeasible approximate solutions, which is problematic if the objective function is only defined in the feasible region:

Moreover, the merit and augmented Lagrangian functions only make sense for equality constraints.

▶ Barrier functions provide an effective way (interior point methods) of working with inequality constraints $h(x) \le 0$:

Inverse barrier function:

$$\phi_{\mu}(\boldsymbol{x}) = f(\boldsymbol{x}) - \mu \sum_{i=1}^{m} \frac{1}{h_i(\boldsymbol{x})}$$

Logarithmic barrier function:

$$\phi_{\mu}(\boldsymbol{x}) = f(\boldsymbol{x}) - \mu \sum_{i=1}^{m} \log(-h_{i}(\boldsymbol{x}))$$

in theory with sufficiently small steps we have $oldsymbol{x}_{\mu}^{*}
ightarrow oldsymbol{x}^{*}$ as $\mu
ightarrow 0$