
CS 450: Numerical Anlaysis
Lecture 21

Chapter 7 Numerical Integration and Di�erentiation
Basic Numerical Quadrature Methods

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

April 6, 2018



Integrability and Sensitivity

I Function f is integrable if continuous and bounded, in practice a finite
number of discontinuities is also ok:
Seek to compute I(f) =

∫ b
a f(x)dx, define ||f ||∞ = maxx∈[a,b] |f(x)|

I The condition number of integration is bounded by the distance b− a:
Suppose the input function is perturbed f̂ = f + δf , then

δI = |I(f̂)− I(f)|
≤ |I(δf)|
≤ (b− a)||δf ||∞

Note that this result does not depend on the magnitude of f or its derivatives,
which means integration is generally very well-conditioned, which makes
sense since integration corresponds to averaging.



Quadrature Rules
I To approximate the integral I(f), compute a weighted sum of points:

Qn(f) =

n∑
i=1

wif(xi)

I {xi}ni=1 are quadrature nodes or abscissas, {wi}ni=1 are quadrature weights.
I Quadrature rule is closed if x1 = a, xn = b and open otherwise.
I Rule is progressive if nodes of Qn are a subset of those of Qn+1.

I For a fixed set of n nodes, unique quadrature weights give exact
(n− 1)-degree quadrature rule:
The rule is exact for all (n− 1)-degree polynomials. Express the unique
(n− 1)-degree polynomial interpolant in the Lagrange basis
p(x) =

∑n
i=1 φi(x)f(xi). The quadrature rule is defined by

Qn(f) = I(p(x)) =

n∑
i=1

I(φi)︸ ︷︷ ︸
wi

f(xi).



Quadrature Rules and Error
I Quadrature weights can be alternatively determined for a rule by solving the

moment equations:

V (x, {φi}ni=1)w = y({φi}ni=1), where yi = I(φi)

I We can approximate the error bound for a polynomial quadrature rule by

|I(f)−Qn(f)| = |I(f − pn−1(x))|
≤ (b− a)||f − pn−1||∞

≤ b− a
4n

hn||f (n)||∞

where h = maxi(xi+1 − xi)



Newton-Cotes Quadrature
I Newton-Cotes quadrature rules are defined by equispaced nodes on [a, b]:

open: xi = a+ i(b− a)/(n+ 1), closed: xi = a+ (i− 1)(b− a)/(n− 1).
I The midpoint rule is the n = 1 open Newton-Cotes rule:

M(f) = (b− a)f
(
a+ b

2

)
I The trapezoid rule is the n = 2 closed Newton-Cotes rule:

T (f) =
(b− a)

2
(f(a) + f(b))

I Simpson’s rule is the n = 3 closed Newton-Cotes rule:

S(f) =
b− a
6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)



Error in Newton-Cotes Quadrature
I Consider the Taylor expansion of f about the midpoint of the integration

interval m = (a+ b)/2:

f(x) = f(m) + f ′(m)(x−m) +
f ′′(m)

2
(x−m)2 + . . .

Integrating the Taylor approximation of f , we note that the odd terms drop,

I(f) = f(m)(b− a)︸ ︷︷ ︸
M(f)

+
f ′′(m)

24
(b− a)3︸ ︷︷ ︸

E(f)

+O((b− a)5)

I The midpoint rule is third-order accurate (first degree).
I The trapezoid rule is also first degree, despite using higher-degree polynomial

interpolant approximation.
I Error can be conveniently approximated by di�erence of two rules,

T (f)−M(f) ≈ 3E(f).



Conditioning of Newton-Cotes Quadrature
I We can ascertain stability of quadrature rules, by considering the

amplification of a perturbation f̂ = f + δf :

|Qn(f̂)−Qn(f)| = |Qn(δf)|

=

n∑
i=1

wiδf(xi)

≤ ||w||1||δf ||∞.

Note that we always have
∑

iwi = b− a, since the quadrature rule must be
correct for a constant function. So if w is positive ||w||1 = b− a, the
quadrature rule is stable, i.e. it matches the conditioning of the problem.

I Newton-Cotes quadrature rules have at least one negative weight for any
n ≥ 11: More generally, ||w||1 →∞ as n→∞ for fixed b− a. This means that
the Newton-Cotes rules can be ill-conditioned.



Clenshaw-Curtis Quadrature

I To obtain a more stable quadrature rule, we need to ensure the integrated
interpolant is well-behaved as n increases:
Chebyshev quadrature nodes ensure that interpolant polynomial has
bounded coe�cients so long as f is bounded, since the Vandermonde system
defining its coe�cients is well-conditioned. Formally, it can be shown that
wi > 0 for Chebyshev-node (Clenshaw-Curtis) quadrature.


