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Integrability and Sensitivity

» Function f is integrable if continuous and bounded, in practice a finite
number of discontinuities is also ok:

Seek to compute I(f) = fff(a:)dx, define || f||oo = maxye(qp | f(2)]
» The condition number of integration is bounded by the distance b — a:
Suppose the input function is perturbed f = f + 8 f, then

0T = |I(f) - I(f)
< [1(6)|
< (b= a)llofle
Note that this result does not depend on the magnitude of f or its derivatives,

which means integration is generally very well-conditioned, which makes
sense since integration corresponds to averaging.



Quadrature Rules
» To approximate the integral I(f), compute a weighted sum of points:

Qn(f) = wif(:)
=1

» {x;}", are quadrature nodes or abscissas, {w;}!_, are quadrature weights.
» Quadrature rule is closed if x1 = a,z, = b and open otherwise.
» Rule is progressive if nodes of Q,, are a subset of those of Q1.
» For a fixed set of n nodes, unique quadrature weights give exact

(n — 1)-degree quadrature rule:

The rule is exact for all (n — 1)-degree polynomials. Express the unique

(n — 1)-degree polynomial interpolant in the Lagrange basis

p(x) = >, ¢i(x) f(x;). The quadrature rule is defined by

Qn(f) =I(p(z)) = ; LEU@ f@s).



Quadrature Rules and Error

» Quadrature weights can be alternatively determined for a rule by solving the
moment equations:

Viz,{¢itis))w =y({¢i}i1), where y; =1(¢;)
» We can approximate the error bound for a polynomial quadrature rule by

() = Qu(N)] = I(f = pn-1(2))]
< (b=a)llf = pn-1ll
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where h = maxi(:ciﬂ — .%)



Newton-Cotes Quadrature
» Newton-Cotes quadrature rules are defined by equispaced nodes on [a, ]:
open: z; =a+i(b—a)/(n+1), closed: z;j=a+ (i —1)(b—a)/(n —1).
» The midpoint rule is the n = 1 open Newton-Cotes rule:

M) = 0-a (*5°)

» The trapezoid rule is the n = 2 closed Newton-Cotes rule:

T(f) = (f(a) + 1 (b))

» Simpson’s rule is the n = 3 closed Newton-Cotes rule:

= (@ +ar (H52) + 1)




Error in Newton-Cotes Quadrature
» Consider the Taylor expansion of f about the midpoint of the integration

interval m = (a +b)/2:
f(x) = f(m)+ f'(m)(z —m) + '}0/,(2m)(a:—m)2 +...

Integrating the Taylor approximation of f, we note that the odd terms drop,

1) = fm)o - ) + L 0y L0( - )
—_————

M B(f)

» The midpoint rule is third-order accurate (first degree).
» The trapezoid rule is also first degree, despite using higher-degree polynomial

interpolant approximation.
» Error can be conveniently approximated by difference of two rules,

T(f) = M(f) = 3E(f).



Conditioning of Newton-Cotes Quadrature

» We can ascertain stability of qugdrature rules, by considering the
amplification of a perturbation f = f +4/:

1Qn(f) = Qu(f)] = |Qn(6f)]
= Zwi5f($i)
=1
< [|w|[1[8£1]oo-

Note that we always have ", w; = b — a, since the quadrature rule must be
correct for a constant function. So if w is positive ||lw||1 = b — a, the
quadrature rule is stable, i.e. it matches the conditioning of the problem.

» Newton-Cotes quadrature rules have at least one negative weight for any
n > 11: More generally, ||w||1 — oo as n — oo for fixed b — a. This means that

the Newton-Cotes rules can be ill-conditioned.



Clenshaw-Curtis Quadrature

» To obtain a more stable quadrature rule, we need to ensure the integrated
interpolant is well-behaved as n increases:

Chebyshev quadrature nodes ensure that interpolant polynomial has
bounded coefficients so long as f is bounded, since the Vandermonde system
defining its coefficients is well-conditioned. Formally, it can be shown that

w; > 0 for Chebyshev-node (Clenshaw-Curtis) quadrature.



