
CS 450: Numerical Anlaysis
Lecture 21

Chapter 7 Numerical Integration and Di�erentiation
Gaussian Quadrature, Integral Equations, and Numerical Di�erentiation

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

April 6, 2018

Quadrature Rules

I A quadrature rule provides x and w so as to approximate

I(f) ≈ Qn(f) = 〈w,y〉, where yi = f(xi)

Qn integrates the (n− 1)-degree polynomial interpolant through f , We note
that y can be obtained from the Vandermonde system,

〈w,y〉 = Qn(f) = I(pn−1) =
[∫ b

a φ1(x)dx · · ·
∫ b
a φn(x)dx

]
V (x, {φi}ni=1)−1y.

Thus to obtain w, we need to solve the linear system,

V (x, {φi}ni=1)Tw =
[∫ b

a φ1(x)dx · · ·
∫ b
a φn(x)dx

]T
,

which is independent of y.

Gaussian Quadrature

I So far, we have only considered quadrature rules based on a fixed set of
nodes, but we can also choose a set of nodes to improve accuracy:
Choice of nodes gives additional n parameters for a total of 2n degrees of
freedom, permitting representation of polynomials of degree 2n− 1.

I The unique n-point Gaussian quadrature rule is defined by the solution of the
nonlinear form of the moment equations in terms of both x and w:
Given any complete basis, we seek to solve the nonlinear equations,

V (x, {φi}2n+1
i=1)Tw = y({φi}2n+1

i=1), where yi = I(φi)

For fixed x, we have an overdetermined system of linear equations for w, but
these nonlinear equations generally have a unique solution (x∗,w∗).

Using Gaussian Quadrature Rules

I Gaussian quadrature rules are hard to compute, but can be enumerated for a
fixed interval, e.g. a = 0, b = 1, so it su�ces to transform the integral to [0, 1]

We can transform the integral as follows,

I(f) =

∫ b

a
f(x)dx =

∫ 1

0
g(t)dt where f(x) = g

(
x+ b− a
b− a

)
.

I Gaussian quadrature rules are are accurate and stable but not progressive
(nodes cannot be reused to obtain higher-degree approximation).

I maximal degree is obtained
I weights are always positive (perfect conditioning)

Progressive Gaussian-like Quadrature Rules

I Kronod quadrature rules construct (2n+ 1)-point quadrature K2n+1 that is
progressive w.r.t. Gaussian quadrature rule Gn

I (2n+ 1)-point Kronod rule is degree 3n+ 1, Gaussian quadrature rule would be
of degree 4n+ 1.

I Kronod rule points are optimal chosen to reuse all points of Gn, so n+ 1 rather
than 2n+ 1 new evaluations are necessary.

I Patterson quadrature rules use 2n+ 2 more points to extend (2n+ 1)-point
Kronod rule to degree 6n+ 4, while reusing all 2n+ 1 points.

I Gaussian quadrature rules are in general open, but Gauss-Radau and
Gauss-Lobatto rules permit including end-points:
Gauss-Radau uses one of two end-points as a node, while Gauss-Lobatto
quadrature uses both.

Composite and Adaptive Quadrature
I Composite quadrature rules are obtained by integrating a piecewise

interpolant of f :
For example, we can derive simple composite Newton-Cotes rules by
partitioning the domain into sub-intervals [xi, xi+1]:

I composite midpoint rule

I(f) =

n−1∑
i=1

∫ xi+1

xi

f(x)dx ≈
n−1∑
i=1

(xi+1 − xi)f((xi+1 + xi)/2)

I composite trapezoid rule

I(f) =

n−1∑
i=1

∫ xi+1

xi

f(x)dx ≈
n−1∑
i=1

(xi+1 − xi)
2

(f(xi+1) + f(xi))

I Composite quadrature can be done with adaptive refinement:
Introduce new nodes where error estimate is large. Error estimate can be
obtained by e.g. comparing trapezoid and midpoint rules, but can be
completely wrong if function is insu�ciently smooth.

More Complicated Integration Problems

I To handle improper integrals can either transform integral to get rid of
infinite limit or use appropriate open quadrature rules.

I Double integrals can simply be computed by successive 1-D integration.
Composite multidimensional rules are also possible by partitioning the
domain into chunks.

I High-dimensional integration is most often done by Monte Carlo integration:

∫
Ω
f(x)dx = E[Y], Y =

|Ω|
N

N∑
i=1

Yi, Yi = f(xi), xi chosen randomly from Ω.

convergence rate is independent of dimension of x (n) only on number of
samples (N), with error scaling as O(1/

√
N).

Integral Equations
I Rather than evaluating an integral, in solving an integral equation we seek to

compute the integrand. A typical linear integral equation has the form∫ b

a
K(s, t)u(t)dt = f(s), where K and f are known.

Using a quadrature rule with weights w1, . . . , wn and nodes t1, . . . , tn obtain
n∑

j=1

wjK(s, tj)u(tj) = f(s).

Discrete sample of f on s1, . . . , sn yields a linear system of equations,
n∑

j=1

wjK(si, tj)u(tj) = f(si).

I Integral equations are used to
I recover signal u given response function with kernel K and measurements of f ,
I solve equations arising from Green’s function methods for PDEs.

Challenges in Solving Integral Equations

I Integral equations based on response functions tend to be ill-conditioned,
which is resolved using

I truncated singular value decomposition of A, where aij = wjK(si, tj)

I replacing the linear system with a regularized linear least squares problem,
I expressing the solution using a basis

Let u(t) ≈
∑n

j=1 cjφj(t) and derive equations for the coe�cients.

Numerical Di�erentiation

I Automatic (symbolic) di�erentation is a surprisingly viable option.
I Any computer program is di�erentiable, since it is an assembly of basic

arithmetic operations.
I Existing software packages can automatically di�erentiate whole programs.

I Numerical di�erentation can be done by interpolation or finite di�erencing
I Given polynomial interpolant, its derivative is easy to obtain.

f ′(x) ≈ p′n−1(x) =
[
φ′1(x) · · · φ′n(x)

]T
V (t, {φi}ni=1)−1y, where yi = f(ti).

I Finite-di�erencing formulas e�ectively use linear interpolant.

Accuracy of Finite Di�erences
I Forward and backward di�erences provide first-order accuracy:

These can be derived using two forms of the Taylor expansion of f about x,

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)h2/2 + . . .

f(x− h) = f(x)− f ′(x)h+ f ′′(x)h2/2− . . .

For forward di�erencing, we obtain an approximation from the first equation,

f ′(x) =
f(x+ h)− f(x)

h
+ f ′′(x)h/2 +

I Centered di�erencing provides second-order accuracy: Using a sum of the
two Taylor expansions, or equivalently a di�erence between the forward- and
backward-di�erencing formulas, we obtain centered di�erencing,

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2).

Second order accuracy is due to cancellation of odd terms like f ′′(x)h/2.

Extrapolation Techniques
I Given a series of approximate solutions produced by an iterative procedure,

a more accurate approximation may be obtained by extrapolating this series.
For example, as we lower the step size h in a finite-di�erence formula, we can
try to extrapolate the series to h = 0, if we know that

F (h) = a0 + a1h
p +O(hr) as h→ 0 and seek to determine F (0) = a0,

for example in ceterned di�erences p = 2 and r = 4.
I In particular, given two guesses, Richardson extrapolation eliminates the

leadering order error term:
seek to eliminate a1h

p term in F (h), F (h/2) to improve approximation of a0,

F (h) = a0 + a1h
p +O(hr)

F (h/2) = a0 + a1h
p/2p +O(hr)

a0 = F (h)− F (h)− F (h/2)

1− 1/2p
+O(hr).

High-Order Extrapolation

I Given a series of k approximations, Romberg integration applies
(k − 1)-levels of Richardson extrapolation.
Can apply Richardson extrapolation to each of k − 1 pairs of consecutive
nodes, then proceed recursively on the k − 1 resulting approximations.

I Extrapolation can be used within an iterative procedure at each step:
For example, Ste�ensen’s method for finding roots of nonlinear equations
achieves quadratic convergence using Aitken’s delta-squared extrapolation
process. The method requires no derivative and competes with the Secant
method (quadratic versus superlinear convergence, but an extra function
evaluation necessary).

