CS 450: Numerical Anlaysis

Lecture 23

Chapter 9 Initial Value Problems for Ordinary Differential Equations
Introduction to Numerical Solutions to ODEs

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

April 18, 2018

Ordinary Differential Equations

ightharpoonup An ordinary differential equation (ODE) usually describes time-varying system by a function y(t) that satisfies a set of equations in its derivatives The general implicit form is

$$m{g}(t,m{y},m{y}',m{y}'',\dots,m{y}^{(k)}) = m{0},$$

but we restrict focus on the explicit form, $y^{(k)} = f(t, y, y', y'', \dots, y^{(k-1)})$.

► An ODE of any *order* k can be transformed into a first-order ODE,

$$egin{aligned} oldsymbol{u}' = egin{bmatrix} oldsymbol{u}'_1 \ dots \ oldsymbol{u}'_{k-1} \ oldsymbol{u}'_k \end{bmatrix} = egin{bmatrix} oldsymbol{u}_2 \ dots \ oldsymbol{u}_k \ oldsymbol{f}(t,oldsymbol{u}_1,\dots,oldsymbol{u}_k) \end{bmatrix} = & ext{where} & oldsymbol{u}_i(t) = oldsymbol{y}^{(i-1)}(t). \end{aligned}$$

Consequently we restrict our focus to systems of first-order ODEs. Of particular importance are linear ODEs, which have the form y' = A(t)y, whose coefficients are said to be constant if A(t) = A for all t.

Example: Newton's Second Law

ightharpoonup F = ma corresponds to a second order ODE

$$F(t, y(t), y'(t)) = my''(t)$$

$$y''(t) = f(t, y, y') = F(t, y(t), y'(t))/m$$

▶ We can transform it into a first order ODE in two variables

$$egin{aligned} oldsymbol{u} &= egin{bmatrix} y(t) \ y'(t) \end{bmatrix} \ egin{bmatrix} u_1' \ u_2' \ \end{pmatrix} &= oldsymbol{u}' = oldsymbol{f}(t, oldsymbol{u}) = egin{bmatrix} u_2 \ F(t, oldsymbol{u})/m \end{bmatrix} \end{aligned}$$

Initial Value Problems

Generally, a first order ODE specifies only the derivative, so the solutions are non-unique, an *initial condition* addresses this:

$$\boldsymbol{y}(t_0) = \boldsymbol{y}_0$$

This condition yields an initial value problem (IVP), which is the simplest example of a boundary condition.

► Given an initial condition, an ODE must satisfy an integral equation for any given point *t*:

$$oldsymbol{y}(t) = oldsymbol{y}_0 + \int_{t_0}^t oldsymbol{f}(s, oldsymbol{y}(s)) ds$$

In the special case that y' = f(t), the integral can be computed directly by numerical quadrature to solve the ODE.

Existence and Uniqueness of Solutions

► For an ODE to have a unique solution, it must be defined on a closed domain *D* and be *Lipschitz continuous*:

$$\forall \boldsymbol{y}, \hat{\boldsymbol{y}} \in D, \quad ||\boldsymbol{f}(t, \hat{\boldsymbol{y}}) - \boldsymbol{f}(t, \boldsymbol{y})|| \le L||\hat{\boldsymbol{y}} - \boldsymbol{y}||,$$

i.e. the rate of change of the ODE should itself change continuously. Any differentiable function f is Lipschitz continuous with

$$L = \max_{(t, \boldsymbol{y}) \in D} ||\boldsymbol{J}_{\boldsymbol{f}}(t, \boldsymbol{y})||.$$

► The solutions of an ODE can be stable, unstable, or asymptotically stable: Perturbation to the input causes a perturbation to the solution that has bounded growth for a stable ODE, unbounded for an unstable ODE, and shrinks for an asymptotically stable ODE.

Stability of 1D ODEs

▶ The solution to the scalar ODE $y' = \lambda y$ is $y(t) = y_0 e^{\lambda t}$, with stability dependent on λ :

$$\lim_{t o \infty} y(t) = egin{cases} \infty &: \lambda > 0 \ ext{(unstable)} \ y_0 &: \lambda = 0 \ ext{(stable)} \ 0 &: \lambda < 0 \ ext{(asymptotically stable)} \end{cases}$$

A linear ODE generally has the form y' = Ay, with stability dependent on the spectral radius (largest eigenvalue) of A:

For general ODEs, stability can be ascertained locally by a considering a linear approximatiaion $f(t,y) \approx y + J_f(t)^{-1}y$ and measuring the spectral radius of $J_f(t)^{-1}$.

Numerical Solutions to ODEs

- Methods for numerical ODEs seek to approximate y(t) at $\{t_k\}_{k=1}^m$. Compute \hat{y}_k for $k \in \{1, \dots, m\}$ so as to approxumate $y(t_k) \approx \hat{y}_k$. For an IVP, typically form \hat{y}_{k+1} using \hat{y}_k or additionally (for multistep methods) \hat{y}_{k-1}, \dots
- Euler's method provides the simplest method (attempt) for obtaining a numerical solution:

Approximation solution to ODE at t_k+h by linear segment from (t_k, \boldsymbol{y}_k) with slope $\boldsymbol{f}(t_k, \boldsymbol{y}_k)$,

$$\boldsymbol{y}_{k+1} = \boldsymbol{y}_k + h_k \boldsymbol{f}(t_k, \boldsymbol{y}_k).$$

Its instructive to observe that this approximation arises as the first order form of various models (Taylor series, finite differences, interpolation, quadrature, undetermined coefficients).

Error in Numerical Methods for ODEs

 Truncation error is typically the main quantity of interest, which can be defined globally or locally Global error is measured at all points

$$\boldsymbol{e}_k = \boldsymbol{\hat{y}}_k - \boldsymbol{y}(t_k),$$

which local error measures the deviation from the exact solution $u_{k-1}(t)$ passing through the previous point (t_{k-1}, \hat{y}_{k-1}) ,

$$\boldsymbol{l}_k = \boldsymbol{\hat{y}}_k - \boldsymbol{u}_{k-1}(t_k).$$

▶ The order of accuracy of Euler's method is one less than than the order of the leading order term in $m{l}_k$

Accuracy is of order p if $l_k = O(h_k^{p+1})$. Euler's method is first order accurate by Taylor expansion analysis.

Stability of Numerical Methods for ODEs

- Stability can be defined for numerical methods similarly to ODEs themselves. A method for an ODE with stable solutions can be unstable. Usually, we will seek to establish a stability region for a method, which describes the step-size conditions necessary for stability in terms of the step size h and (the largest) eigenvalue λ , usually as a function of $h\lambda$.
- Basic stability properties follow fron analysis of linear scalar ODE, which serves as a local approximation to more complex ODEs.

Consider forward Euler for the ODE $y' = \lambda y$, where

$$y_{k+1} = y_k + h\lambda y_k = (1 + h\lambda)y_k.$$

Euler's method requires $|1+h\lambda|\leq 1$ to be stable, which implies $-2\leq h\lambda\leq 0$ for real λ . For a general ODE, the eigenvalues of ${\bf J}_f$ must lie within a circle on the complex plain centered at -1 with radius 1.

Implicit Methods

► Implicit methods for ODEs form a sequence of solutions that satisfy conditions on a local approximation to the solution:

The most basic implicit method is the backward Euler method

$$y_{k+1} = y_k + h_k f(t_{k+1}, y_{k+1}),$$

which solves for y_{k+1} so that a linear approximation of the solution at t_{k+1} passed through the point (t_k, y_k) . Just like forward Euler, first-order accuracy is achieved by the linear approximation.

► The backward Euler method for a simple linear scalar ODE stability region is the left half of the complex plane:

Such a method is called unconditionally stable. Note that the growth factor can be derived via

$$y_{k+1} = y_k + h\lambda y_{k+1} = \frac{1}{1 - h\lambda} y_k,$$

and satisfies $|1/(1-h\lambda)| \le 1$ so long as $h\lambda \le 0$.