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Ordinary Di�erential Equations
I An ordinary di�erential equation (ODE) usually describes time-varying

system by a function y(t) that satisfies a set of equations in its derivatives
The general implicit form is

g(t,y,y′,y′′, . . . ,y(k)) = 0,

but we restrict focus on the explicit form, y(k) = f(t,y,y′,y′′, . . . ,y(k−1)).

I An ODE of any order k can be transformed into a first-order ODE,

u′ =


u′1
...

u′k−1
u′k

 =


u2
...
uk

f(t,u1, . . . ,uk)

 = where ui(t) = y(i−1)(t).

Consequently we restrict our focus to systems of first-order ODEs. Of
particular importance are linear ODEs, which have the form y′ = A(t)y,
whose coe�cients are said to be constant if A(t) = A for all t.



Example: Newton’s Second Law

I F = ma corresponds to a second order ODE

F (t, y(t), y′(t)) = my′′(t)

y′′(t) = f(t, y, y′) = F (t, y(t), y′(t))/m

I We can transform it into a first order ODE in two variables

u =

[
y(t)
y′(t)

]
[
u′1
u′2

]
= u′ = f(t,u) =

[
u2

F (t,u)/m

]



Initial Value Problems

I Generally, a first order ODE specifies only the derivative, so the solutions are
non-unique, an initial condition addresses this:

y(t0) = y0

This condition yields an initial value problem (IVP), which is the simplest
example of a boundary condition.

I Given an initial condition, an ODE must satisfy an integral equation for any
given point t:

y(t) = y0 +

∫ t

t0

f(s,y(s))ds

In the special case that y′ = f(t), the integral can be computed directly by
numerical quadrature to solve the ODE.



Existence and Uniqueness of Solutions

I For an ODE to have a unique solution, it must be defined on a closed domain
D and be Lipschitz continuous:

∀y, ŷ ∈ D, ||f(t, ŷ)− f(t,y)|| ≤ L||ŷ − y||,

i.e. the rate of change of the ODE should itself change continuously. Any
di�erentiable function f is Lipschitz continuous with

L = max
(t,y)∈D

||Jf (t,y)||.

I The solutions of an ODE can be stable, unstable, or asymptotically stable:
Perturbation to the input causes a perturbation to the solution that has
bounded growth for a stable ODE, unbounded for an unstable ODE, and
shrinks for an asymptotically stable ODE.



Stability of 1D ODEs

I The solution to the scalar ODE y′ = λy is y(t) = y0e
λt, with stability

dependent on λ:

lim
t→∞

y(t) =


∞ : λ > 0 (unstable)
y0 : λ = 0 (stable)
0 : λ < 0 (asymptotically stable)

I A linear ODE generally has the form y′ = Ay, with stability dependent on the
spectral radius (largest eigenvalue) of A:
For general ODEs, stability can be ascertained locally by a considering a
linear approximatiaion f(t,y) ≈ y + Jf (t)

−1y and measuring the spectral
radius of Jf (t)

−1.



Numerical Solutions to ODEs

I Methods for numerical ODEs seek to approximate y(t) at {tk}mk=1.
Compute ŷk for k ∈ {1, . . . ,m} so as to approxumate y(tk) ≈ ŷk. For an IVP,
typically form ŷk+1 using ŷk or additionally (for multistep methods) ŷk−1, . . .

I Euler’s method provides the simplest method (attempt) for obtaining a
numerical solution:
Approximation solution to ODE at tk + h by linear segment from (tk,yk) with
slope f(tk,yk),

yk+1 = yk + hkf(tk,yk).

Its instructive to observe that this approximation arises as the first order
form of various models (Taylor series, finite di�erences, interpolation,
quadrature, undetermined coe�cients).



Error in Numerical Methods for ODEs

I Truncation error is typically the main quantity of interest, which can be
defined globally or locally
Global error is measured at all points

ek = ŷk − y(tk),

which local error measures the deviation from the exact solution uk−1(t)
passing through the previous point (tk−1, ŷk−1),

lk = ŷk − uk−1(tk).

I The order of accuracy of Euler’s method is one less than than the order of
the leading order term in lk

Accuracy is of order p if lk = O(hp+1
k ). Euler’s method is first order accurate

by Taylor expansion analysis.



Stability of Numerical Methods for ODEs

I Stability can be defined for numerical methods similarly to ODEs themselves.
A method for an ODE with stable solutions can be unstable. Usually, we will
seek to establish a stability region for a method, which describes the
step-size conditions necessary for stability in terms of the step size h and (the
largest) eigenvalue λ, usually as a function of hλ.

I Basic stability properties follow fron analysis of linear scalar ODE, which
serves as a local approximation to more complex ODEs.
Consider forward Euler for the ODE y′ = λy, where

yk+1 = yk + hλyk = (1 + hλ)yk.

Euler’s method requires |1 + hλ| ≤ 1 to be stable, which implies −2 ≤ hλ ≤ 0
for real λ. For a general ODE, the eigenvalues of Jf must lie within a circle on
the complex plain centered at −1 with radius 1.



Implicit Methods
I Implicit methods for ODEs form a sequence of solutions that satisfy

conditions on a local approximation to the solution:
The most basic implicit method is the backward Euler method

yk+1 = yk + hkf(tk+1,yk+1),

which solves for yk+1 so that a linear approximation of the solution at tk+1

passed through the point (tk,yk). Just like forward Euler, first-order accuracy
is achieved by the linear approximation.

I The backward Euler method for a simple linear scalar ODE stability region is
the left half of the complex plane:
Such a method is called unconditionally stable. Note that the growth factor
can be derived via

yk+1 = yk + hλyk+1 =
1

1− hλ
yk,

and satisfies |1/(1− hλ)| ≤ 1 so long as hλ ≤ 0.


