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Ordinary Differential Equations

» An ordinary differential equation (ODE) usually describes time-varying
system by a function y(t) that satisfies a set of equations in its derivatives
The general implicit form is

at,y,v,y",...,y") =0,

but we restrict focus on the explicit form, y*) = f(t,y, v, y",...,y*V).
» An ODE of any order k can be transformed into a first-order ODE,
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Consequently we restrict our focus to systems of first-order ODEs. Of
particular importance are linear ODEs, which have the form y' = A(t)y,
whose coefficients are said to be constant if A(t) = A for all t.



Example: Newton’s Second Law

» F = ma corresponds to a second order ODE

F(t,y(t),y'(t) = my"(t)
y'(t) = f(tyy) F(t,y(t),y'(t)/m

» We can transform it into a first order ODE in two variables



Initial Value Problems

» Generally, a first order ODE specifies only the derivative, so the solutions are
non-unique, an initial condition addresses this:

y(to) = yo
This condition yields an initial value problem (IVP), which is the simplest
example of a boundary condition.

» Given an initial condition, an ODE must satisfy an integral equation for any
given point ¢:

y(t) =yo+ | f(s,y(s))ds

to

In the special case that y' = f(t), the integral can be computed directly by
numerical quadrature to solve the ODE.



Existence and Uniqueness of Solutions

» For an ODE to have a unique solution, it must be defined on a closed domain
D and be Lipschitz continuous:

i.e. the rate of change of the ODE should itself change continuously. Any
differentiable function f is Lipschitz continuous with

L = ma J¢(t, .
(e [ T¢(t, y)l|
» The solutions of an ODE can be stable, unstable, or asymptotically stable:

Perturbation to the input causes a perturbation to the solution that has
bounded growth for a stable ODE, unbounded for an unstable ODE, and
shrinks for an asymptotically stable ODE.



Stability of 1D ODEs

» The solution to the scalar ODE 3’ = Ay is y(t) = yoe, with stability
dependent on \:

oo : A >0 (unstable)
tlgélo y(t) =< yo :A=0(stable)
0 : )\ <0 (asymptotically stable)

» A linear ODE generally has the form y’ = Ay, with stability dependent on the
spectral radius (largest eigenvalue) of A:
For general ODEs, stability can be ascertained locally by a considering a
linear approximatiaion f(t,y) ~ y + J¢(t)~ly and measuring the spectral
radius of J¢(t)~L.



Numerical Solutions to ODEs

» Methods for numerical ODEs seek to approximate y(¢) at {t}}" ;.

Compute gy, for k € {1,...,m} so as to approxumate y(ty) ~ §y. For an IVP,
typically form 4.1 using g or additionally (for multistep methods) g1, . . .

» Euler’s method provides the simplest method (attempt) for obtaining a
numerical solution:
Approximation solution to ODE at ti. + h by linear segment from (ty, yi) with

slope f(tk, yk),
Y1 = Yk + hi S (b, Yg).

Its instructive to observe that this approximation arises as the first order
form of various models (Taylor series, finite differences, interpolation,
quadrature, undetermined coefficients).



Error in Numerical Methods for ODEs

» Truncation error is typically the main quantity of interest, which can be
defined globally or locally
Global error is measured at all points

e, = Yr — y(tw),

which local error measures the deviation from the exact solution w1 (t)
passing through the previous point (t;—1, gx—1),

Uy = G — wp—1(tg).

» The order of accuracy of Euler’s method is one less than than the order of
the leading order term in I,

Accuracy is of order p if I}, = O(hi“). Euler’s method is first order accurate
by Taylor expansion analysis.



Stability of Numerical Methods for ODEs

» Stability can be defined for numerical methods similarly to ODEs themselves.

A method for an ODE with stable solutions can be unstable. Usually, we will
seek to establish a stability region for a method, which describes the
step-size conditions necessary for stability in terms of the step size h and (the
largest) eigenvalue )\, usually as a function of h\.

» Basic stability properties follow fron analysis of linear scalar ODE, which
serves as a local approximation to more complex ODEs.

Consider forward Euler for the ODE i/ = \y, where

Yk+1 = Yk + hAyr = (1 4+ AN yy.

Euler’s method requires |1 + hA| < 1 to be stable, which implies —2 < hA <0
for real \. For a general ODE, the eigenvalues of J; must lie within a circle on
the complex plain centered at —1 with radius 1.



Implicit Methods

» Implicit methods for ODEs form a sequence of solutions that satisfy
conditions on a local approximation to the solution:

The most basic implicit method is the backward Euler method

Yit1 = Yk + e f(tet1, Yot1),

which solves for y;..1 so that a linear approximation of the solution at tj,
passed through the point (ti,yy). Just like forward Euler, first-order accuracy
is achieved by the linear approximation.

» The backward Euler method for a simple linear scalar ODE stability region is
the left half of the complex plane:
Such a method is called unconditionally stable. Note that the growth factor
can be derived via

1
=yr + hA = —
Ye+1 = Yk Yk+1 1 h)\yk’a

and satisfies |1/(1 — hA)| < 1so long as hA < 0.



