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Initial Value Problems for ODEs

I We restrict attention to first-order systems of ODEs and pay special attention
to linear and constant-coe�cient systems:
An IVP for an ODE usually has the form y′ = f(t,y) with initial value
(t0,y(t0)). A linear ODE f has the form f(t,y) = A(t)y(t), and is said to have
constant coe�cients if A(t) does not vary with t.

I Existence and uniqueness of a solution to an IVP is guaranteed over any
domain D on which f is Lipschitz continuous:

∃L ∈ R, ||f(t,y)− f(t, ŷ)|| ≤ L||y − ŷ||, ∀y, ŷ ∈ D

which is stronger than continuity of f (di�erentiability of y), but weaker than
di�erentiability of f , i.e. f can suddenly begin to change at a di�erent rate.
The constant L bounds the rate at which similar solutions y and ŷ can
diverge or converge.



Convergence and Stability

I Generally, we seek to approximate y(tk) for a set of points tk = t0 + kh by ŷk:
Would like to converge with decreasing step-size, i.e. limh→0 ŷk = y(tk). Can
measure global error (deviation from true solution) or local error (deviation of
ŷk from uk−1(tk) where uk−1(tk−1) = ŷk−1 and u′k−1 = y′).

I Stability ascertains behavior as t→∞ either of the ODE itself or of a
numerical method:

I For an ODE, stability identifies convergence/divergence of perturbed solutions.
I For a numerical method, it identifies step-size bounds necessary to ensure the

method converges along with the ODE.
I If a method is stable, the local error provides a trustworthy metric of global

error.
I A sti� ODE is a convergent ODE with rapidly varying small components, which

poses a challenge for stability of methods.



Accuracy and Taylor Series Methods

I By taking a degree-r Taylor expansion of the ODE in t, at each consecutive
(tk, ŷk), we achieve kth order accuracy.
We can bound the local approximation error as the error the Taylor
expansion,

y(tk + h) = y(tk) + y′(tk)h+ · · ·+ y(r)(tk)h
r−1/r!

which is O(hr+1), which leads to O(hr) accuracy in the approximation to
f(t,y). Euler’s method is a first-order Taylor series method.

I Taylor series methods require high-order derivatives at each step:
Analytic di�erentiation is expensive, so seek to approximate. Can perform a
finite-di�erencing approximation by evaluating at points near (tk, ŷk)
(multi-stage methods) or simply using previous points, e.g. (tk−1, ŷk−1)
(multi-step methods).



Multi-Stage Methods
I Multi-stage methods construct ŷk+1 by approximating y between tk and tk+1:

Runge-Kutta methods are the most well-known family of these, simple
example is Heun’s method,

ŷk+1 = ŷk + h

[
f(tk,yk)︸ ︷︷ ︸

v1

/2 + f
(
tk + h,yk + hf(tk,yk)︸ ︷︷ ︸

v1

)
/2

]
.

We can think of the above method as employing the trapezoid quadrature
rule. The di�erence between Heun’s method and the (implicit) trapezoid
method is that we evaluate at f(tk + h,yk + hv1) rather than working with the
implicit value of f(tk + h,yk+1).

I The 4th order Runge-Kutta scheme is particularly popular:
This scheme uses Simpson’s rule

ŷk+1 = ŷk + (h/6)(v1 + 2v2 + 2v3 + v4)

v1 = f(tk,yk), v2 = f(tk + h/2,yk + (h/2)v1),

v3 = f(tk + h/2,yk + (h/2)v2), v4 = f(tk + h,yk + hv3)



Runge-Kutta Methods
I Runge-Kutta methods evaluate f at tk + cih for c0, . . . , cr ∈ [0, 1],

A Runge-Kutta method can be derived as a quadrature rule

uk(tk+1) = ŷk +

∫ tk+h

tk

f(s,y(s))ds ≈ ŷk + h

r−1∑
i=0

wif(tk + cih, ŷki),

where {(ci, wi)}ri=0 are quadrature node, weight pairs, but we still have
flexibility in choosing ŷki. One good choice is to successively construct

ŷki = ŷk + h
∑
j

aijf(tk + cih, ŷkj) = ŷk + hcif(tk + cih, ŷk,i−1).

More general choices for aij are often represented by a Butcher tableau,

c A

wT
e.g. for RK4,

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

If aij = 0 for j ≥ i, the scheme is explicit, if for j > i then diagonally implicit,
and otherwise implicit.



Properties of Runge-Kutta and Extrapolation Methods

I Runge-Kutta methods are self-starting, but are harder to use to obtain error
estimates.
Self-starting means that we only need ŷk to form ŷk+1. Embedded
Runge-Kutta schemes provides 4th + 5th order results, yielding an error
estimate.

I Extrapolation methods achieve high accuracy by successively reducing
step-size.
Use single-step method with step sizes h, h/2, h/4, ... to approximate solution
at tk + h.



Multistep Methods

I Multistep methods employ {ŷk}ki=0 to compute ŷk+1:
Linear multistep methods have the form,

ŷk+1 =

m∑
i=1

αiŷk+1−i + h

m∑
i=0

βif(tk+1−i,yk+1−i).

Interpolation is used to determine each αi and βi, method is explicit if β0 = 0.
I Multistep methods are not self-starting

However, they require few function evaluations. Multivalue methods
generalize multistep methods to non-uniformly-spaced points.


