CS 450: Numerical Anlaysis

Lecture 24
Chapter 9 Initial Value Problems for Ordinary Differential Equations
Numerical Methods for Solving ODE IVPs

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

April 18, 2018

Initial Value Problems for ODEs

- ► We restrict attention to first-order systems of ODEs and pay special attention to linear and constant-coefficient systems:
 - An IVP for an ODE usually has the form y' = f(t, y) with initial value $(t_0, y(t_0))$. A linear ODE f has the form f(t, y) = A(t)y(t), and is said to have constant coefficients if A(t) does not vary with t.
- ► Existence and uniqueness of a solution to an IVP is guaranteed over any domain D on which f is Lipschitz continuous:

$$\exists L \in \mathbb{R}, ||\boldsymbol{f}(t, \boldsymbol{y}) - \boldsymbol{f}(t, \hat{\boldsymbol{y}})|| \leq L||\boldsymbol{y} - \hat{\boldsymbol{y}}||, \forall \boldsymbol{y}, \hat{\boldsymbol{y}} \in D$$

which is stronger than continuity of f (differentiability of y), but weaker than differentiability of f, i.e. f can suddenly begin to change at a different rate. The constant L bounds the rate at which similar solutions y and \hat{y} can diverge or converge.

Convergence and Stability

- ▶ Generally, we seek to approximate $y(t_k)$ for a set of points $t_k = t_0 + kh$ by \hat{y}_k :

 Would like to converge with decreasing step-size, i.e. $\lim_{h\to 0} \hat{y}_k = y(t_k)$. Can measure global error (deviation from true solution) or local error (deviation of \hat{y}_k from $u_{k-1}(t_k)$ where $u_{k-1}(t_{k-1}) = \hat{y}_{k-1}$ and $u'_{k-1} = y'$).
- ▶ Stability ascertains behavior as $t \to \infty$ either of the ODE itself or of a numerical method:
 - ► For an ODE, stability identifies convergence/divergence of perturbed solutions.
 - ► For a numerical method, it identifies step-size bounds necessary to ensure the method converges along with the ODE.
 - ▶ If a method is stable, the local error provides a trustworthy metric of global error.
 - A stiff ODE is a convergent ODE with rapidly varying small components, which poses a challenge for stability of methods.

Accuracy and Taylor Series Methods

▶ By taking a degree-r Taylor expansion of the ODE in t, at each consecutive (t_k, \hat{y}_k) , we achieve kth order accuracy.

We can bound the local approximation error as the error the Taylor expansion,

$$\boldsymbol{y}(t_k+h) = \boldsymbol{y}(t_k) + \boldsymbol{y}'(t_k)h + \cdots + \boldsymbol{y}^{(r)}(t_k)h^{r-1}/r!$$

which is $O(h^{r+1})$, which leads to $O(h^r)$ accuracy in the approximation to f(t, y). Euler's method is a first-order Taylor series method.

▶ Taylor series methods require high-order derivatives at each step: Analytic differentiation is expensive, so seek to approximate. Can perform a finite-differencing approximation by evaluating at points near $(t_k, \hat{\boldsymbol{y}}_k)$ (multi-stage methods) or simply using previous points, e.g. $(t_{k-1}, \hat{\boldsymbol{y}}_{k-1})$ (multi-step methods).

Multi-Stage Methods

Multi-stage methods construct \hat{y}_{k+1} by approximating y between t_k and t_{k+1} :

Runge-Kutta methods are the most well-known family of these, simple example is Heun's method,

$$\hat{\boldsymbol{y}}_{k+1} = \hat{\boldsymbol{y}}_k + h \left[\underbrace{\boldsymbol{f}(t_k, \boldsymbol{y}_k)}_{\boldsymbol{v}_1} / 2 + \boldsymbol{f} \left(t_k + h, \boldsymbol{y}_k + h \underbrace{\boldsymbol{f}(t_k, \boldsymbol{y}_k)}_{\boldsymbol{v}_1} \right) / 2 \right].$$

We can think of the above method as employing the trapezoid quadrature rule. The difference between Heun's method and the (implicit) trapezoid method is that we evaluate at $f(t_k + h, y_k + hv_1)$ rather than working with the implicit value of $f(t_k + h, y_{k+1})$.

▶ The 4th order Runge-Kutta scheme is particularly popular:

This scheme uses Simpson's rule

$$\hat{y}_{k+1} = \hat{y}_k + (h/6)(v_1 + 2v_2 + 2v_3 + v_4)
v_1 = f(t_k, y_k), v_2 = f(t_k + h/2, y_k + (h/2)v_1),
v_3 = f(t_k + h/2, y_k + (h/2)v_2), v_4 = f(t_k + h, y_k + hv_3)$$

Runge-Kutta Methods

▶ Runge-Kutta methods evaluate f at $t_k + c_i h$ for $c_0, \ldots, c_r \in [0, 1]$, A Runge-Kutta method can be derived as a quadrature rule

$$oldsymbol{u}_k(t_{k+1}) = \hat{oldsymbol{y}}_k + \int_{t_k}^{t_k+h} oldsymbol{f}(s,oldsymbol{y}(s)) ds \quad pprox \quad \hat{oldsymbol{y}}_k + h \sum_{i=0}^{r-1} w_i oldsymbol{f}(t_k + c_i h, \hat{oldsymbol{y}}_{ki}),$$

where $\{(c_i, w_i)\}_{i=0}^r$ are quadrature node, weight pairs, but we still have flexibility in choosing \hat{y}_{ki} . One good choice is to successively construct

$$\hat{oldsymbol{y}}_{ki} = \hat{oldsymbol{y}}_k + h \sum_i a_{ij} oldsymbol{f}(t_k + c_i h, \hat{oldsymbol{y}}_{kj}) = \hat{oldsymbol{y}}_k + h c_i oldsymbol{f}(t_k + c_i h, \hat{oldsymbol{y}}_{k,i-1}).$$

More general choices for a_{ij} are often represented by a Butcher tableau,

If $a_{ij} = 0$ for $j \ge i$, the scheme is explicit, if for j > i then diagonally implicit, and otherwise implicit.

Properties of Runge-Kutta and Extrapolation Methods

► Runge-Kutta methods are self-starting, but are harder to use to obtain error estimates.

Self-starting means that we only need \hat{y}_k to form \hat{y}_{k+1} . Embedded Runge-Kutta schemes provides 4th + 5th order results, yielding an error estimate.

Extrapolation methods achieve high accuracy by successively reducing step-size.

Use single-step method with step sizes h, h/2, h/4, ... to approximate solution at $t_k + h$.

Multistep Methods

Multistep methods employ $\{\hat{y}_k\}_{i=0}^k$ to compute \hat{y}_{k+1} :

Linear multistep methods have the form,

$$\hat{y}_{k+1} = \sum_{i=1}^{m} \alpha_i \hat{y}_{k+1-i} + h \sum_{i=0}^{m} \beta_i f(t_{k+1-i}, y_{k+1-i}).$$

Interpolation is used to determine each α_i and β_i , method is explicit if $\beta_0 = 0$.

Multistep methods are not self-starting However, they require few function evaluations. Multivalue methods generalize multistep methods to non-uniformly-spaced points.