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Boundary Value Problems for ODEs

I Often we seek to solve a di�erential equation that satisfies conditions on its
values and derivatives on parts of the domain boundary. Consider a first
order ODE y′(t) = f(t,y) with general linear boundary conditions:

Bay(a) +Bby(b) = c

I for IVP, simple case of Dirichlet (value) condition Ba = I, BBb = 0
I conditions are separate if Ba 6= 0 and Bb 6= 0

I High-order boundary conditions can be reduced to first-order like ODEs
themselves:
The Neumann boundary condition gives y′(a), which simply implies we have
u2(a) = y′(a) if we use u1 = y and u2 = y′.



Boundary Value Problems for ODEs
I Can derive the solutions to a linear ODE BVP y′(t) = A(t)y(t) + b(t) from

solutions to homogeneous linear ODE y′ = A(t)y(t) IVPs:
Let the solution to the homogeneous ODE IVP with yi(a) = ei be given by the
ith column of Y (t), so

Y (t) = I +

∫ t

a
A(s)Y (s)ds.

Now, we seek to derive a solution of the form y(t) = Y (t)u(t) with
u(0) = y(a), which satisfies the given boundary condition,

BaY (a)y(a) +BbY (b)y(a) +BbY (b)

∫ b

a
u′(s)ds = c

(BaY (a) +BbY (b))︸ ︷︷ ︸
Q

y(a) = c−BbY (b)

∫ b

a
u′(s)ds,

the existence of solution y, thus generally depends on invertibility of Q.



Boundary Value Problems for ODEs
I Can derive the solutions to a linear ODE BVP y′(t) = A(t)y(t) + b(t) from

solutions to homogeneous linear ODE y′ = A(t)y(t) IVPs:
To determine u(t) = y(a) +

∫ t
a u
′(s)ds, we use the di�erential equation

A(t)y(t) + b(t) = y′(t) = Y ′(t)u(t) + Y (t)u′(t)

= A(t)Y (t)u(t)︸ ︷︷ ︸
y(t)

+Y (t)u′(t),

u′(t) = Y −1(t)b(t).

Thus, given u(t) = y(a) +
∫ t
a Y

−1(s)b(s)ds, the overall solution is

y(t) = Y (t)u(t)

= Y (t)Q−1
(
c−BbY (b)

∫ b

a
Y −1(s)b(s)︸ ︷︷ ︸

u′(s)

ds

)
︸ ︷︷ ︸

y(a)

+Y (t)

∫ t

a
Y −1(s)b(s)︸ ︷︷ ︸

u′(s)

ds



Linear ODE BVP Green’s Function
I We now express our solution (with form y(t) = Y (t)(u(a) +

∫ t
a u
′(s)ds)) in

the form y(t) = s(t) +
∫ b
a G(t, s)b(s)ds where G is the Green’s function:

Using the fact that,

Y (t)Q−1 (BaY (a) +BbY (b))︸ ︷︷ ︸
Q

∫ t

a
Y −1(s)b(s)ds = Y (t)

∫ t

a
Y −1(s)b(s)ds,

we can express our previous solution in the form,

y(t) = Y (t)Q−1
(
c+BaY (a)

∫ t

a
Y −1(s)b(s)ds−BbY (b)

∫ b

t
Y −1(s)b(s)ds

)
,

which allows us to derive the Green’s function,

G(t, s) = Y (t)Q−1I(s)Y −1(s), I(s) =

{
BaY (a) : s < t

BbY (b) : s ≥ t



Conditioning of Linear ODE BVPs

I For any given b(t) and c, the solution to the BVP can be written in the form:

y(t) = Φ(t)c+

∫ b

a
G(t, s)b(s)ds

Φ(t) = Y (t)Q−1 is the fundamental matrix, which like the Green’s function is
associated with the homogeneous ODE as well as its linear boundary
condition matrices Ba and Bb, but is independent b(t) and c.

I The absolute condition number of the BVP is κ = max{||Φ||∞, ||G||∞}:
This sensitivity measure enables us to bound the perturbation ||ŷ − y||∞ with
respect to the magnitude of a perturbation to b(t) or c.



Shooting Method for ODE BVPs
I For linear ODEs, we constructed solutions from IVP solutions in Y (t), which

suggests a method for solving BVPs by reduction to IVPs:
The shooting method iteratively (for k = 1, 2, . . .) constructs approximate
initial value guesses ŷ(k)(a) ≈ y(a), solves the resulting IVP, and checks the
quality of the solution at the new boundary,

||Bbŷ
(k)(b)−Baŷ

(k)(a)− c||,

the initial conditions for the next shot, ŷ(k+1)(a) can be constructed by a 1D
root finding technique on

h(x) = Bax+Bbyx(b)− c, where yx(b) is the IVP Solution with yx(a) = x.

I Multiple shooting employs the shooting method over subdomains:
Conditioning of shooting method depends on stability of IVPs, which can be
worse than conditioning of the BVP. However, the shooting problems are
interdependent, as they must satisfy continuity conditions on boundaries
between them, leading to a system of nonlinear equations.



Finite Di�erence Methods
I Rather than solve a sequence of IVPs that satisfy the ODEs until they

(approximately) satisfy boundary conditions, we can refine an approximation
that satisfies the boundary conditions, until it satisfies the ODE:
Finite di�erence methods works by obtaining a solution on points t1, . . . , tn,
so that ŷk ≈ y(tk) by finite-di�erence formulae, for example

f(t,y) = y′(t) ≈ y(t+ h)− y(t− h)
2h

⇒ f(tk, ŷk) =
ŷk+1 − ŷk−1
tk+1 − tk−1

the resulting system of equations can be solved by standard methods and is
linear if f is linear.

I Convergence to solution is obtained with decreasing step size h so long as
the method is consistent and stable:
Consistency implies that the truncation error goes to zero, while stability
ensures input perturbations have bounded e�ect on solution.


