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Finite Di�erence Methods
I Lets derive the finite di�erence method for the ODE BVP defined by

u′′ + 1000(1 + t2)u = 0

with boundary conditions u(−1) = 3 and u(1) = −3.
Using a discretization with points t1, . . . , tn, ti+1 − ti = h, and a centered
di�erence approximation for u′′ we obtain

ui+1 − 2ui + ui−1
h2

+ 1000(1 + ti)ui = 0.

We can rewrite the above using linear equations with matrices

A =



1

1/h2 −2/h2 1/h2

. . .
. . .

. . .
1/h2 −2/h2 1/h2

1

 and B =



0
0 1000(1 + t2)

. . .
1000(1 + tn−1) 0

0



and solve the system (A+B)u =
[
3 0 · · · 0 −3

]T .



Collocation Methods
I Collocation methods approximate y by representing it in a basis

y(t) = v(t,x) =

n∑
i=1

xiφi(t).

To construct equations, consider approximation for a set of collocation points
t1, . . . , tn with t1 = a and tn = b,

∀i∈{2,...,n−1} v(ti,x) = f(ti,v(ti,x)),

with two more equations typically obtained from boundary conditions at t1, tn.
I Spectral methods use polynomials or trigonometric functions for φi, which

are nonzero over most of [a, b], while finite element methods leverage basis
functions with local support (e.g. B-splines).
Eigenfunctions of di�erential operators are typically trigonometric functions
or polynomials, hence the name “spectral methods”.



Solving BVPs by Optimization
I We reformulate the collocation approximation as an optimization problem:

Consider the simplified scenario f(t, y) = f(t) with residual equation,

r(t,x) = v′(t,x)− f(t) =
n∑

j=1

xjφ
′
j(t)− f(t)

and minimize it using the objective function,

F (x) =
1

2

∫ b

a
||r(t,x)||22dt.

I The first-order optimality conditions of the optimization problem are a
system of linear equations Ax = b:

0 =
dF

dxi
=

∫ b

a
r(t,x)T

dr

dxi
dt =

∫ b

a
r(t,x)Tφ′i(t)dt

=

n∑
j=1

xj

∫ b

a
φ′j(t)

Tφ′i(t)dt︸ ︷︷ ︸
aij

−
∫ b

a
f(t)Tφ′i(t)dt︸ ︷︷ ︸

bi



Weighted Residual
I Weighted residual methods work by ensuring the residual is orthogonal with

respect to a given set of weight functions:
Rather than setting components of the gradient to zero, we instead have,∫ b

a
r(t,x)Twi(t)dt = 0, ∀i ∈ {1, . . . , n},

which again yields a system of equations of the form Ax = b where

aij =

∫ b

a
φ′j(t)

Twi(t), bi =

∫ b

a
f(t)Twi(t).

The collocation method is a weighted residual method where wi(t) = δ(t− ti).
I The Galerkin method is a weighted residual method where wi = φi.

Linear system with the sti�ness matrix A and load vector b is

0 =
n∑

j=1

xj

∫ b

a
φ′j(t)

Tφi(t)dt︸ ︷︷ ︸
aij

−
∫ b

a
f(t)Tφi(t)dt︸ ︷︷ ︸

bi

.



Linear BVPs by Optimization
I Lets apply the Galerkin method to the more general linear ODE
f(t, y) = A(t)y(t) + b(t) with residual equation,
First, choose basis functions {φi}ni=1 to satisfy the boundary conditions, so
solution automatically satisfies them, then minimize the residual,

r = v′ −Av − b, so that r(t,x) =
n∑

j=1

xj(φ
′
j(t)−A(t)φj(t))− b(t).

The Galerkin method, minimizes the residual by orthogonality with respect to
a set of test functions that is the same as the set of basis functions,

0 =

∫ b

a
r(t,x)Tφi(t)dt

=

n∑
j=1

xj

∫ b

a
(φ′j(t)−A(t)φj(t))

Tφi(t)dt−
∫ b

a
b(t)Tφi(t)dt



Nonlinear BVPs: Poisson Equation
In practice, BVPs are at least second order and its advantageous to work in the
natural set of variables.

I Consider the Poission equation u′′ = f(t) with boundary conditions
u(a) = u(b) = 0 and define a localized basis of hat functions:

φi(t) =


(t− ti−1)/h : t ∈ [ti−1, ti]

(ti+1 − t)/h : t ∈ [ti, ti+1]

0 : otherwise

where t0 = t1 = a and tn+1 = tn = b.
Trying to define the residual equation as usual, we obtain

r = v′′ − f, so that r(t,x) =
n∑

j=1

xjφ
′′
j (t)− f(t).

However, φ′′j (t) is undefined, since φ′j(t) is discontinuous at tj−1, tj , tj+1.



Weak Form and the Finite Element Method
I The finite-element method permits a lesser degree of di�erentiability of

basis functions by casting the ODE in weak form:
For any solution u, if test function φi satisfies the boundary conditions, the
ODE satisfies the weak form,∫ b

a
f(t)φi(t)dt =

∫ b

a
u′′(t)φi(t)dt = u′(b)φi(b)︸ ︷︷ ︸

0

−u′(a)φi(a)︸ ︷︷ ︸
0

−
∫ b

a
u′(t)φ′i(t)dt

= −
∫ b

a
u′(t)φ′i(t)dt.

Note that the final equation contains no second derivatives, and subsequently
we can form the linear system Ax = b with,

aij = −
∫ b

a
φ′j(t)φ

′
i(t)dt, bi =

∫ b

a
f(t)φi(t)dt.

The finite element method thus searches the larger (once-di�erentiable)
function space to find a solution u that is in a (twice-di�erentiable) subspace.



Finite Element Methods in Practice

I Hat functions are linear instances of B-splines:
B-splines of degree k are k-times di�erentiable. For higher-order ODEs or
high-order convergence with h, its necessary to use k > 1.

I Finite-element methods readily generalize to PDEs:
In its most basic form each element corresponds to a triangle (2D) or
quadrilateral (3D).



Eigenvalue Problems with ODEs

I A typical second-order scalar BVP eigenvalue problem has the form

u′′ = λf(t, u, u′), with boundary conditions u(a) = 0, u(b) = 0

Lets first consider f(t, u, u′) = g(t)u, in which case we can approximate the
solution at a set of points t1, . . . , tn using finite di�erences,

yi+1 − 2yi + yi−1
h2

= λgiyi,

which corresponds to a tridiagonal matrix eigenvalue problem Ay = λy via

yi+1 − 2yi + yi−1
gih2

= λyi.



Eigenvalue Problems with ODEs

I Generalized eigenvalue problems arise from more sophisticated ODEs,

u′′ = λ(g(t)u+ h(t)u′), with boundary conditions u(a) = 0, u(b) = 0

We can approximate each of the derivatives at a set of points t1, . . . , tn using
finite di�erences,

yi+1 − 2yi + yi−1
h2

= λ

(
gi +

yi+1 − yi−1
2h

)
yi.

which can be expressed as a generalized matrix eigenvalue problem

Ay = λBy

where both A and B are tridiagonal.


