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Finite Difference Methods
» Lets derive the finite difference method for the ODE BVP defined by

u” +1000(1 + t*)u =0
with boundary conditions u(—1) = 3 and u(1) = —3.

Using a discretization with points t1, ..., t,, t;11 — t; = h, and a centered
difference approximation for v" we obtain

Uit — 2u; + Ui
h2
We can rewrite the above using linear equations with matrices

+ 1000(1 + t;)u; = 0.

1 0
1/h?  —2/n? 1/h? 0 1000(1 + t2)

A = and B = .
1/h?  —2/h? 1/h? 1000(1 4+ t,_1) O
1 0
and solve the system (A+B)u=[3 0 ---0 -3] T



Collocation Methods

» Collocation methods approximate y by representing it in a basis
y(t) =v(t,@) = > zihi(t).
=1

To construct equations, consider approximation for a set of collocation points
t1,...,tp, Wwithty =aandt, = b,

Vi€{2,...,n—1} ’U(tiv 93) — f(tlv ’U(ti, l’)),

with two more equations typically obtained from boundary conditions at t1,t,,.
» Spectral methods use polynomials or trigonometric functions for ¢;, which

are nonzero over most of [a, b], while finite element methods leverage basis

functions with local support (e.g. B-splines).

Eigenfunctions of differential operators are typically trigonometric functions

or polynomials, hence the name “spectral methods”.



Solving BVPs by Optimization

» We reformulate the collocation approximation as an optimization problem:
Consider the simplified scenario f(t,y) = f(t) with residual equation,

r(t.e) = ' (tae) - f(t) =Y a;d(t) -
j=1

and minimize it using the objective function,

I )
—5 | Irte.2) Bt

» The first-order optimality conditions of the optimization problem are a
system of linear equations Az = b:

b b
0- 1~ [rew) ar- / r(t.2) $(0)dt

_ij/qb ORA0 /f (1) $i(t)




Weighted Residual

» Weighted residual methods work by ensuring the residual is orthogonal with
respect to a given set of weight functions:
Rather than setting components of the gradient to zero, we instead have,

b
/ r(t, @) wi(t)dt = 0,Yi € {1,...,n},

which again yields a system of equations of the form Ax = b where

%—/% T (t), b—/f T

The collocation method is a weighted residual method where w;(t) = §(t — t;).
» The Galerkin method is a weighted residual method where w; = ¢;.

Linear system with the stiffness matrix A and load vector b is

o_z%/@T@ /fT@

(l”




Linear BVPs by Optimization

» Lets apply the Galerkin method to the more general linear ODE
f(t,y) = A(t)y(t) + b(t) with residual equation,
First, choose basis functions {¢;}?_, to satisfy the boundary conditions, so
solution automatically satisfies them, then minimize the residual,

r=v — Av —b, sothat r(t,x) Zxﬂp] A(t)g;(t)) — b(t).

The Galerkin method, minimizes the residual by orthogonality with respect to
a set of test functions that is the same as the set of basis functions,

0= /br(t, x)T ¢y (t)dt

b
—Z% [ 60~ awos0) s [ oo



Nonlinear BVPs: Poisson Equation

In practice, BVPs are at least second order and its advantageous to work in the
natural set of variables.

» Consider the Poission equation v” = f(¢) with boundary conditions
u(a) = u(b) = 0 and define a localized basis of hat functions:

(t—tifl)/h it e [tiflyti]
¢i(t) = (tix1 =)/t € [ti ti]
0 : otherwise

where to =ty =aand t,41 =t, =b.
Trying to define the residual equation as usual, we obtain

r=v"— f, sothat r(t,x) Zajjqﬁ

However, ¢(t) is undefined, since ¢'(t) is discontinuous at t;_1,t;,t;1.



Weak Form and the Finite Element Method

» The finite-element method permits a lesser degree of differentiability of
basis functions by casting the ODE in weak form:
For any solution u, if test function ¢; satisfies the boundary conditions, the
ODE satisfies the weak form,

b b b
/fm@mmz/wwmmﬁzw@@@—w@@w—/uwmmﬁ

S~~~ S~~~
0 0

b
— - [

Note that the final equation contains no second derivatives, and subsequently
we can form the linear system Ax = b with,

b b
Gy = — / & (O(0)dt, b = / F(O)bi(b)dt.

The finite element method thus searches the larger (once-differentiable)
function space to find a solution u that is in a (twice-differentiable) subspace.



Finite Element Methods in Practice

» Hat functions are linear instances of B-splines:
B-splines of degree k are k-times differentiable. For higher-order ODEs or
high-order convergence with h, its necessary to use k > 1.

» Finite-element methods readily generalize to PDEs:

In its most basic form each element corresponds to a triangle (2D) or
quadrilateral (3D).



Eigenvalue Problems with ODEs

» A typical second-order scalar BVP eigenvalue problem has the form
u” = Nf(t,u,u'), with boundary conditions u(a) = 0,u(b) =0

Lets first consider f(t,u,u") = g(t)u, in which case we can approximate the
solution at a set of points t1, ..., t, using finite differences,

Yit1 — 2Yi + Yi-1
hQ

= AgiYi,
which corresponds to a tridiagonal matrix eigenvalue problem Ay = \y via

Yir1 — 2y + yi1
gih?

= Y.



Eigenvalue Problems with ODEs
» Generalized eigenvalue problems arise from more sophisticated ODEs,
u” = Mg(t)u + h(t)u’), with boundary conditions wu(a) = 0,u(b) =0

We can approximate each of the derivatives at a set of points t1, ..., t, using
finite differences,

Yi+1 — 2Yyi + Yim1 Yit1l — Yi—1
2 _A<gi+2h)yi'

which can be expressed as a generalized matrix eigenvalue problem
Ay = ABy

where both A and B are tridiagonal.



