CS 450: Numerical Anlaysis

Lecture 29 Chapter 12 Fast Fourier Transform
Fast Solvers: Multigrid and FFT
Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

May 2, 2018

Sparse Linear Systems and Time-independent PDEs

» The Poisson equation serves as a model problem for numerical methods:

» the 2D Poisson problem and resulting Kronecker product linear system are a
common benchmark,

» this system has the form T @ I + I ® T where T is tridiagonal.

» Dense, sparse direct, iterative, FFT, and Multigrid methods provide
increasingly good complexity for the problem:

» dense linear system solve costs O(n?) naively,

nested dissection with Cholesky has O(n?/?) complexity and O(nlogn) memory
Conjugate-Gradient gives O(n®/?) complexity with O(n) memory

FFT achieves O(nlogn) cost and multigrid achieves O(n).

v

v

v

Multigrid
» Multigrid employs a hierarchy of grids to accelerate iterative methods:

» the residual equation A& = r on each fine grid, is approximately solved on the
next coarser grid,

» the equation is restricted by projection matrix P, so that PAPT P& = Pr

» the interpolation operator (often given by PT) is used to obtain an approximate
& based on the coarse grid approximate solution,

» at each level we perform some smoothing operations (e.g. Jacobi or Conjugate
Gradient) before restriction and after interpolation,

» at the coarsest level we typically solve directly.

» The multigrid method works by resolving high-frequency error components
on finer-grids and low-frequency error components on coarser grids:

» smoothers are usually effective at reducing local error, but slow at resolving
global (low-frequency) components of the error,
» on coarser grids, the low frequency error may be resolved more quickly.

Multigrid
» Consider the Galerkin approximation with linear finite elements to the
Poisson equation w” = f(t) with boundary conditions u(a) = u(b) = 0:
(t—ti—1)/h :t € [ti—1,tq
S () = (tigr — 1)k L€ [t tis]
0 : otherwise

where tg =ty = a and t,+1 =t, = b. The weak form with grid spacing of h is

/f ij/ o (5™ (1)t

in multigrid, we define a coarse grid basis of (n — 1)/2 functions, which are
hat functions of twice the width,

1 1 (t — ti_g)/Qh 1t e [ti_g,ti]
O () = 5057 5(8) + Bl () + 585 (6) = § (tisa = 8)/2h 5L € [tiytisa)

0 : otherwise

Coarse Grid Matrix
» Multigrid restricts the residual equation on the fine grid A®z = »(") to the

coarse grid: Let oM = [p{2") ... QSEEL}L_)I)/Q} and ¢(h o - ¢>7(zh)]
and define restriction matrix P so that 2" = P
. 1 2 1 p(1>
P 12 1 — |p®

The coarse grid stiffness matrix is given by

(2h / ¢ (2h)! (it
_ 0 (/ S (1)pM'T (1)dt) P07
—AM)

ACh — pAM pT

Restricting the Residual Equation

» Given the fine-grid residual ("), we seek to use the coarse grid to
approximate (™ so that Az ~ (")

Given a function in the coarse grid basis, u? = z2M" $(") we can express
it in the fine-grid basis via
u®) — T pgt) — LT p)
—_——
P(2h) 2T

Conseguently, the solution to the restricted residual equation

AR (2h) — »(h) will lead to an approximate residual equation solution on
the fine grid with ") = PTx(2h). Noting this, we derive the form of the
coarse grid residual,

r(2h) — A(2h) 4 (2h)
— PAM PTL2h) — p A(R) 4(h)
= pr,

Discrete Fourier Transform

» The solutions to hyperbolic PDEs like Poisson are wave-like and take on
simple representations in the frequency basis, both for continuous and
discretized equations. We define the discrete Fourier transform using

W(ny = cos(2m/n) —isin(27/n) = e*?ﬂ'i/n’

The DFT matrix F € R"*" is given by f;; = w(l,,

1 1 1 1

1 2 3

o [P Y Y Y
1 w?y wh, Wb

SR Ly

LWy @iy @

» jt is complex and symmetric (not Hermitian),
» jt is unitary modulo scaling F* = nF~1.

The discrete Fourier transform of vector v is Fv.

Fast Fourier Transform (FFT)

» Consider b = Fa, we have

n—1

Vjelo,n—1] b = Zw{ff)ak,
k=0

the FFT computes this recursively via 2 FFTs of dimension /2, using
W(nj2) = Wiy

n/2—1 n/2—1
(2K 2k+1
bj = Z w(n a2k + Z w a?k+1
k=0
n/2—1 n/2—1

= D WOt Wy D Wlayztann
k=0 k=0

Fast Fourier Transform Derivation

» The FFT leverages similarity between the first and second half of the output,
n/2—1 n/2—1

bj = Z w(/2)(12k +w Z wn/2 a2k+1

uj Uj

corresponds closely to the entry shifted by n/2,

n/2—1 n/2—1
n/2)k j+n/2 i+n/2)k
bjgnj2 = Z w(nJ/r2/ Fan ‘H"g:) / Z ngig)/ : A2k+1
k=0
(J+n/2)k n/2 \k _ 1k _ i n/2 _
Now w;, o) (/2) since (w Wi, /2)) = 1" =1 and using Wiy = —L
n/2—1 ‘ ' n/2—1 ‘
bjnss = D Wlajz)@k Wl D Wy ai
k=0 k=0

uj vj

FFT Algorithm Summary
» Let vectors uw and v be two recursive FFTs, Vj € [0,n/2 — 1]

n/2—1 n/2—1

=S e =Y e
Uu; = W(n/g)a2k7 v = (n/2)@2k+1
k=0 k=0

» Given v and v scale using "twiddle factors” z; = W{n) -V

u+1

» Then it suffices to combine the vectors as follows b = {u .

» The FFT has O(nlogn) cost complexity:

There are two recursive calls of dimension n/2 and O(n) work for application
to twiddle factors and final summation, thus

T(n) =2T(n)+ O(n) = O(nlogn).

Applications of the FFT

» We can rapidly multiply degree n — 1 polynomials by considering their values
Wi,y fori e {0,...,n—1}

Given coefficients of p,, b suffices to compute product with Vanderminde
matrix where v;; = (wz)) which is simply the DFT matrix. Interpolation to
compute coefficients of p. is inverse DFT.

» More generally the DFT can be used to solve any Toeplitz linear system
(convolution): A standard convolution has the form

Vk € [0,71 - 1] Cp = Zajbk_j,

which is equivalent to multiplications of polynomials with degree n/2 — 1 and
coefficients a and b, where the convolution computes the coefficients c of the
product of the two polynomials.

Convolution via DFT

» The Fourier transform method for computing a convolution is given by

Z“_ks<z°’) (Swint)

» Rearrange the order of the summations to see what happens to every product of
aandb

ZZZ A

> Foranyu=j+1t—k+#0, weobserve } (wf,))* =0

» When j 4+t — k = 0 the products w(S;rt Dk — 1, so there are n nonzero terms

a;b,_; in the summation

Solving Numerical PDEs with the FFT

» 1D finite-difference schemes on a regular grid correspond to convolutions:
1D model problem is simply convolution with vector [1, -2, 1].

» For the 1D Poisson model problem, the eigenvectors of T' corresponds to the
imaginary part of a minor of a 2(n + 1)-dimensional DFT matrix:

In particular, T = X DX ~! where x;; is the imaginary part of f; 1 j+1 with
X e R"*" gnd F e R2n+t1)x2(n+1) This means T can be diagonalized and
the overall system solved by FFT with O(nlogn) cost.

» Multidimensional Poisson can be handled with multidimensional FFT:

For example 2D FFT (1D FFT of each row then 1D FFT of each column) suffices
to solve the 2D Poisson problem.

