CS 450: Numerical Anlaysis

Lecture 29 Chapter 12 Fast Fourier Transform
Fast Solvers: Multigrid and FFT

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

May 2, 2018

Sparse Linear Systems and Time-independent PDEs

- ▶ The Poisson equation serves as a model problem for numerical methods:
 - the 2D Poisson problem and resulting Kronecker product linear system are a common benchmark,
 - lacktriangledown this system has the form $m{T}\otimesm{I}+m{I}\otimesm{T}$ where $m{T}$ is tridiagonal.
- ▶ Dense, sparse direct, iterative, FFT, and Multigrid methods provide increasingly good complexity for the problem:
 - dense linear system solve costs $O(n^3)$ naively,
 - nested dissection with Cholesky has $O(n^{3/2})$ complexity and $O(n \log n)$ memory
 - lacktriangleright Conjugate-Gradient gives $O(n^{3/2})$ complexity with O(n) memory
 - ▶ FFT achieves $O(n \log n)$ cost and multigrid achieves O(n).

Multigrid

- ▶ Multigrid employs a hierarchy of grids to accelerate iterative methods:
 - lacktriangledown the residual equation $A\hat{x}=r$ on each fine grid, is approximately solved on the next coarser grid,
 - lacktriangle the equation is restricted by projection matrix $m{P}$, so that $m{P}m{A}m{P}^Tm{P}\hat{m{x}}=m{P}m{r}$
 - the interpolation operator (often given by P^T) is used to obtain an approximate \hat{x} based on the coarse grid approximate solution,
 - ► at each level we perform some smoothing operations (e.g. Jacobi or Conjugate Gradient) before restriction and after interpolation,
 - at the coarsest level we typically solve directly.
- ► The multigrid method works by resolving high-frequency error components on finer-grids and low-frequency error components on coarser grids:
 - smoothers are usually effective at reducing local error, but slow at resolving global (low-frequency) components of the error,
 - on coarser grids, the low frequency error may be resolved more quickly.

Multigrid

► Consider the Galerkin approximation with linear finite elements to the Poisson equation u'' = f(t) with boundary conditions u(a) = u(b) = 0:

$$\phi_i^{(h)}(t) = \begin{cases} (t - t_{i-1})/h & : t \in [t_{i-1}, t_i] \\ (t_{i+1} - t)/h & : t \in [t_i, t_{i+1}] \\ 0 & : \text{otherwise} \end{cases}$$

where $t_0 = t_1 = a$ and $t_{n+1} = t_n = b$. The weak form with grid spacing of h is

$$\int_{a}^{b} f(t)\phi_{i}^{(h)}(t)dt = -\sum_{i=1}^{n} x_{j} \int_{a}^{b} \phi_{j}^{(h)'}(t)\phi_{i}^{(h)'}(t)dt.$$

in multigrid, we define a coarse grid basis of (n-1)/2 functions, which are hat functions of twice the width.

$$\phi_{i}^{(2h)}(t) = \frac{1}{2}\phi_{2i-2}^{(h)}(t) + \phi_{2i-1}^{(h)}(t) + \frac{1}{2}\phi_{2i}^{(h)}(t) = \begin{cases} (t - t_{i-2})/2h & : t \in [t_{i-2}, t_{i}] \\ (t_{i+2} - t)/2h & : t \in [t_{i}, t_{i+2}] \\ 0 & : \textit{otherwise} \end{cases}$$

Coarse Grid Matrix

▶ Multigrid restricts the residual equation on the fine grid $\boldsymbol{A}^{(h)}\boldsymbol{x} = \boldsymbol{r}^{(h)}$ to the coarse grid: Let $\phi^{(2h)} = \begin{bmatrix} \phi_1^{(2h)} & \cdots & \phi_{(n-1)/2}^{(2h)} \end{bmatrix}$ and $\phi^{(h)} = \begin{bmatrix} \phi_1^{(h)} & \cdots & \phi_n^{(h)} \end{bmatrix}$ and define restriction matrix \boldsymbol{P} so that $\phi^{(2h)} = \boldsymbol{P}\phi^{(h)}$, i.e.,

$$m{P} = rac{1}{2} egin{bmatrix} 1 & 2 & 1 & & & \ & 1 & 2 & 1 & & \ & & \ddots & \ddots & \ddots \end{bmatrix} = egin{bmatrix} m{p}^{(1)} \ m{p}^{(2)} \ dots \end{bmatrix}.$$

The coarse grid stiffness matrix is given by

$$a_{ij}^{(2h)} = -\int_{a}^{b} \phi_{j}^{(2h)'}(t)\phi_{i}^{(2h)'}(t)dt$$

$$= -\boldsymbol{p}^{(i)} \underbrace{\left(\int_{a}^{b} \boldsymbol{\phi}^{(h)'}(t)\boldsymbol{\phi}^{(h)'T}(t)dt\right)}_{-\boldsymbol{A}^{(h)}} \boldsymbol{p}^{(j)T},$$

 $\boldsymbol{A}^{(2h)} = \boldsymbol{P} \boldsymbol{A}^{(h)} \boldsymbol{P}^T.$

Restricting the Residual Equation

▶ Given the fine-grid residual $r^{(h)}$, we seek to use the coarse grid to approximate $x^{(h)}$ so that $Ax^{(h)} \approx r^{(h)}$

Given a function in the coarse grid basis, $u^{(2h)} = \boldsymbol{x}^{(2h)^T} \phi^{(2h)}$, we can express it in the fine-grid basis via

$$u^{(2h)} = \boldsymbol{x}^{(2h)^T} \underbrace{\boldsymbol{P} \boldsymbol{\phi}^{(h)}}_{\boldsymbol{\phi}^{(2h)}} = \underbrace{\boldsymbol{x}^{(2h)^T} \boldsymbol{P}}_{\boldsymbol{x}^{(h)^T}} \boldsymbol{\phi}^{(h)}.$$

Consequently, the solution to the restricted residual equation $\mathbf{A}^{(2h)}\mathbf{x}^{(2h)} = \mathbf{r}^{(2h)}$ will lead to an approximate residual equation solution on the fine grid with $\mathbf{x}^{(h)} = \mathbf{P}^T\mathbf{x}^{(2h)}$. Noting this, we derive the form of the coarse grid residual,

$$egin{aligned} m{r}^{(2h)} &= m{A}^{(2h)} m{x}^{(2h)} \ &= m{P} m{A}^{(h)} m{P}^T m{x}^{(2h)} = m{P} m{A}^{(h)} m{x}^{(h)} \ &= m{P} m{r}^{(h)}. \end{aligned}$$

Discrete Fourier Transform

► The solutions to hyperbolic PDEs like Poisson are wave-like and take on simple representations in the frequency basis, both for continuous and discretized equations. We define the *discrete Fourier transform* using

$$\omega_{(n)} = \cos(2\pi/n) - i\sin(2\pi/n) = e^{-2\pi i/n},$$

The DFT matrix $oldsymbol{F} \in \mathbb{R}^{n \times n}$ is given by $f_{ij} = \omega_{(n)}^{ij}$,

$$m{F} = egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & \omega_{(4)}^1 & \omega_{(4)}^2 & \omega_{(4)}^3 \ 1 & \omega_{(4)}^2 & \omega_{(4)}^4 & \omega_{(4)}^6 \ 1 & \omega_{(4)}^3 & \omega_{(4)}^6 & \omega_{(4)}^9 \end{bmatrix}$$

- it is complex and symmetric (not Hermitian),
- it is unitary modulo scaling $F^* = nF^{-1}$.

The discrete Fourier transform of vector v is Fv.

Fast Fourier Transform (FFT)

▶ Consider b = Fa, we have

$$\forall j \in [0, n-1] \quad b_j = \sum_{k=0}^{n-1} \omega_{(n)}^{jk} a_k,$$

the FFT computes this recursively via 2 FFTs of dimension n/2, using $\omega_{(n/2)}=\omega_{(n)}^2$,

$$b_{j} = \sum_{k=0}^{n/2-1} \omega_{(n)}^{j(2k)} a_{2k} + \sum_{k=0}^{n/2-1} \omega_{(n)}^{j(2k+1)} a_{2k+1}$$
$$= \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k} + \omega_{(n)}^{j} \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k+1}$$

Fast Fourier Transform Derivation

▶ The FFT leverages similarity between the first and second half of the output,

$$b_{j} = \underbrace{\sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k}}_{u_{j}} + \omega_{(n)}^{j} \underbrace{\sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k+1}}_{v_{j}}$$

corresponds closely to the entry shifted by n/2,

$$b_{j+n/2} = \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{(j+n/2)k} a_{2k} + \omega_{(n)}^{j+n/2} \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{(j+n/2)k} a_{2k+1}$$

Now $\omega_{(n/2)}^{(j+n/2)k}=\omega_{(n/2)}^{jk}$ since $(\omega_{(n/2)}^{n/2})^k=1^k=1$ and using $\omega_{(n)}^{n/2}=-1$,

$$b_{j+n/2} = \underbrace{\sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k}}_{u_j} - \omega_{(n)}^{j} \underbrace{\sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k+1}}_{v_j}$$

FFT Algorithm Summary

Let vectors \boldsymbol{u} and \boldsymbol{v} be two recursive FFTs, $\forall j \in [0, n/2 - 1]$

$$u_j = \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k}, \quad v_j = \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k+1}$$

- ▶ Given $m{u}$ and $m{v}$ scale using "twiddle factors" $z_j = \omega_{(n)}^j \cdot v_j$
- lacktriangleright Then it suffices to combine the vectors as follows $m{b} = egin{bmatrix} m{u} + m{z} \ m{u} m{z} \end{bmatrix}$
- ▶ The FFT has $O(n \log n)$ cost complexity:

There are two recursive calls of dimension n/2 and O(n) work for application to twiddle factors and final summation, thus

$$T(n) = 2T(n) + O(n) = O(n \log n).$$

Applications of the FFT

• We can rapidly multiply degree n-1 polynomials by considering their values $\omega^i_{(n)}$ for $i \in \{0, \dots, n-1\}$

$$p_c(\omega_{(n)}^i) = p_a(\omega_{(n)}^i)p_b(\omega_{(n)}^i)$$

Given coefficients of p_a, p_b suffices to compute product with Vanderminde matrix where $v_{ij} = (\omega^i_{(n)})^j$, which is simply the DFT matrix. Interpolation to compute coefficients of p_c is inverse DFT.

► More generally the DFT can be used to solve any Toeplitz linear system (convolution): A standard convolution has the form

$$\forall k \in [0, n-1] \quad c_k = \sum_{j=0}^k a_j b_{k-j},$$

which is equivalent to multiplications of polynomials with degree n/2-1 and coefficients ${\boldsymbol a}$ and ${\boldsymbol b}$, where the convolution computes the coefficients ${\boldsymbol c}$ of the product of the two polynomials.

Convolution via DFT

▶ The Fourier transform method for computing a convolution is given by

$$c_k = \frac{1}{n} \sum_{s} \omega_{(n)}^{-ks} \left(\sum_{j} \omega_{(n)}^{sj} a_j \right) \left(\sum_{t} \omega_{(n)}^{st} b_t \right)$$

Rearrange the order of the summations to see what happens to every product of a and b

$$c_k = \frac{1}{n} \sum_{s} \sum_{j} \sum_{t} \omega_{(n)}^{(j+t-k)s} a_j b_t$$

- ▶ For any $u = j + t k \neq 0$, we observe $\sum_{s} (\omega_{(n)}^{u})^{s} = 0$
- When j+t-k=0 the products $\omega_{(n)}^{(s+t-j)k}=1$, so there are n nonzero terms a_jb_{k-j} in the summation

Solving Numerical PDEs with the FFT

- ▶ 1D finite-difference schemes on a regular grid correspond to convolutions: 1D model problem is simply convolution with vector [1, -2, 1].
- For the 1D Poisson model problem, the eigenvectors of T corresponds to the imaginary part of a minor of a 2(n+1)-dimensional DFT matrix: In particular, $T = XDX^{-1}$ where x_{ij} is the imaginary part of $f_{i+1,j+1}$ with $X \in \mathbb{R}^{n \times n}$ and $F \in \mathbb{R}^{2(n+1) \times 2(n+1)}$. This means T can be diagonalized and the overall system solved by FFT with $O(n \log n)$ cost.
- ► Multidimensional Poisson can be handled with multidimensional FFT: For example 2D FFT (1D FFT of each row then 1D FFT of each column) suffices to solve the 2D Poisson problem.