CS 450: Numerical Anlaysis Chapter 1 – Scientific Computing Lecture 1 Numerical analysis introduction, motivation, and applications Posedness, error, and conditioning

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

January 18, 2018

What is Numerical Analysis?

Example: Mechanics¹

- Newton's laws provide incomplete particle-centric picture
- Physical systems can be described in terms of *degrees of freedom* (DoFs)

• N-particle system *configuration* described by 3N DoFs

¹*Variational Principles of Mechanics*, Cornelius Lanczos, Dover Books on Physics, 1949.

Scientific Computing Applications and Context

Mathematical Modelling for Computational Science

Linear Algebra and Computation

Sources of Error

► Representation of Numbers:

Cannod store all dryih of
$$T$$
 (most)
Finite memory, Schutton - store leading significant
digits
Propagated Data Error:
We are given $\hat{x} \propto x$, error = $f(x) - f(x)$
Computational Error = $\hat{f}(x) - f(x)$ = Truncation Error + Rounding Error
error of numerical
milled (approximetical
Figure Multic

Error Analysis

absolute $f(x) - \hat{\tau}(x) \sim f(x) - \hat{f}(x)$ relative absolute error free solution ► Backward Error: f(x) beckward backward stable given y = f(x) beckward if beckward error y = f(x + error) is bounded by a 'small enough' meanne

Conditioning

Posedness and Conditioning

What is the condition number of an ill-posed problem?

Stability and Accuracy

► Accuracy:

Stability: