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Vector Norms
» Properties of vector norms
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Inner-Product Spaces

» Properties of inner-product spaces: Inner products (x, y) must satisfy

» Inner-product-based vector norms
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Matrix Norms

» Properties of matrix norms:
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» Operator/induced/subordinate matrix norms:
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Induced Matrix Norms

» General induced matrix norms:

WAl = mesx TUAGM,
' sl

mah HA‘\“

» Interpreting induced matrix norms:
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Matrix Condition Number

> Definition: r(A) = ||A|| - ||A~!]]

» Intuitive derivation:

relative perturbation in output
k(A) = max max - ——
inputs  perturbations ininput | relative perturbation in input

since a matrix is a linear operator, we can generally decouple its action on
the input and the perturbation, so
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