CS 450: Numerical Anlaysis

Lecture 4
 Chapter 2 - Linear Systems
 Orthogonal Matrices and Conditioning of Linear Systems

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign
January 26, 2018

Norms and Conditioning of Orthogonal Matrices

- Orthogonal matrices:

$$
Q^{-1}=Q^{\top} \quad\|Q x\|_{2}=\|x\|_{2}
$$

- Norm and condition number of orthogonal matrices: $\|Q A\|_{F}=\|A\|_{F}$

$$
\begin{aligned}
\|Q\|_{2} & =1 \\
& =\max _{\|\mid\|_{2}=1}\left(\left\langle Q_{x}, Q_{x}\right\rangle\right)^{1 / 2}=\max _{\|x\|_{2}=1}(x^{+} \underbrace{I}_{\underbrace{Q} Q^{\top} Q})^{1 / 2} \\
K(A) & =\|Q\|_{2}\left\|Q^{-1}\right\|_{2} \\
& =1 \cdot\left\|Q^{\top}\right\|_{2}=1 \quad=\max _{\|x\|_{2}=1}\left(x^{\top} x\right)^{1 / 2}=1
\end{aligned}
$$

Singular Value Decomposition

- The singular value decomposition (SVD):

$$
A=\sum_{\text {orthogonal }}^{u \sum^{V} V^{\top}}
$$

$$
\Sigma=\left[\begin{array}{lll}
\delta_{\max } & & \\
& \ddots & \\
& & \delta_{\min }
\end{array}\right]
$$

orthogonal U, V^{\top} have china that are singular

Singular Value Decomposition

- The singular value decomposition (SVD):

Qr expresses, v in the basis of rows os Q
SVD - a matrix 's "a diagonal map from vectors in. basis of V do vector in a basil

Singular Value Decomposition

- The singular value decomposition (SVD):

$$
\begin{aligned}
& \left.\left[\begin{array}{c}
\alpha_{1} \\
i \\
\alpha_{n}
\end{array}\right]=V^{\top} x \quad 11 \begin{array}{l}
1 \\
1
\end{array}\right]=v_{i} \\
& {\left[\begin{array}{c}
v^{\top} \\
\vdots \\
v_{n}^{\top}
\end{array}\right]}
\end{aligned}
$$

Norms and Conditioning using the SVD

- Norm and condition number in terms of singular values: $\left(\begin{array}{l}1 \\ \vdots \\ 0\end{array}\right)=V^{\top} x$

$$
\begin{aligned}
& \|A\|_{2}=\left\|n \varepsilon v^{+}\right\|_{2} \\
& \|A\|_{2}=\sigma_{\text {max }} \\
& \leq \underbrace{\|u\|}_{T} \| \sum \sum \underbrace{\left\|v^{\top}\right\|}_{2}, \quad y=u \varepsilon \underbrace{\sum v^{\top} x}_{\text {loan }} \\
& \stackrel{\|\Sigma\|_{2}=\sigma_{\max }}{ } \\
& \text { clean }\|\| x \\
& A=n \sum V^{\top} \\
& U^{\top} A V=\Sigma \\
& \| \sum_{\substack{2 \\
\sigma_{m 1 x}}}^{\sim_{\|} \leq u^{\top}\left\|_{2}\right\| A\left\|_{2}\right\| v \|_{2}}
\end{aligned}
$$

Norms and Conditioning using the SVD

- Norm and condition number in terms of singular values:
minimum growth in nom if x when A_{x}

$$
\begin{aligned}
& U\left(\begin{array}{lll}
\sigma_{\text {dor }} & \\
& \imath_{\sigma_{\text {mir }}}
\end{array}\right) \underbrace{V^{\top} \quad x}_{\text {resins }}\|x\|_{2}=\left\|v_{x}^{+}\right\|_{2} \\
& A^{-1}=\left(u \varepsilon v^{\top}\right)^{-1} \\
& =v \varepsilon^{-1} U^{\top} \\
& V^{\top} x=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \\
& \left\|A^{-1}\right\|_{2}=\frac{1}{\delta_{\min }} \quad K(A)=\frac{\sigma_{\text {m }}}{\sigma_{\min }}
\end{aligned}
$$

Norms and Conditioning using the SVD

- Norm and condition number in terms of singular values:

Conditioning of Linear Systems

- Lets now return to formally deriving the conditioning of solving $A x=b$:

Conditioning of Linear Systems

- Lets now return to formally deriving the conditioning of solving $A x=b$:

$$
\frac{\|\delta x\|}{\|\times\|} \leq k(A) \frac{\|\delta b\|}{\|b\|}=\frac{\sigma_{\max } \rightarrow\|\delta b\|}{\delta_{\min } \rightarrow\|b\|}
$$

Conditioning of Linear Systems II

$$
\begin{aligned}
& \text { - Consider perturbations to the input coefficients } \hat{A}=A+\delta A \text { : } \\
& \begin{array}{l}
\|\delta A\| /\|A\| \\
\hat{A} \hat{x}=b
\end{array} \\
& (A+\delta A)(x+\delta x)=b \\
& \delta x=-A^{-1} \delta A_{x} \\
& \|\delta x\|_{2}=\left\|A^{-1} \delta A x\right\|_{2} \\
& \left\|s_{x}\right\| \leq\left\|A^{-1}\right\|\|s a\|\|x\| \\
& \frac{A}{\text { canal }}+\delta A x+A \delta y+\underset{\text { ignave }}{\delta A S_{x}}=\delta_{\text {ca }}^{0} \\
& \begin{aligned}
& \frac{\left\|\delta_{x}\right\|}{\|x\|} \leqslant\left\|A^{-1}\right\|\|\delta A\| \\
= & \underbrace{\left\|A^{-1}\right\| \cdot\|A\|}_{K(A)} \underbrace{\|A A\|}_{\leqslant \Delta}
\end{aligned}
\end{aligned}
$$

Solving Simple Linear Systems

$$
\begin{aligned}
& \checkmark \text { Solve } D x=b \text { if } D \text { is diagonal } \\
& x_{i}: h_{i} / d_{i:} \quad O(n) \\
& \begin{aligned}
V-\text { Solve } Q x & =b \text { if } Q \text { is orthogonal } \\
x & =Q^{\top} b \quad\left(U \sum V^{\dagger}\right) x=b \quad O\left(n^{2}\right)
\end{aligned} \\
& \text { - Solve } L x=b \text { if } L \text { is lower-triangular } U_{y}=b \quad O\left(n^{2}\right) \\
& O(n) \\
& {\left[\begin{array}{ll}
c_{11} & \\
c_{21} & l_{22}
\end{array}\right]\left[\begin{array}{l}
\lambda_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]} \\
& L_{11} x_{1}=b_{1} \\
& L_{22} x_{2}=b_{2}-L_{2}\left(x_{1}\right)
\end{aligned}
$$

