# CS 450: Numerical Anlaysis ${ }^{1}$ 

## Eigenvalue Problems

University of Illinois at Urbana-Champaign

[^0]
## Eigenvalues and Eigenvectors

- A matrix $\boldsymbol{A}$ has eigenvector-eigenvalue pair (eigenpair) $(\lambda, \boldsymbol{x})$ if

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}
$$

- For any scalar $\alpha, \alpha \boldsymbol{x}$ is also an eigenvector of $\boldsymbol{A}$ with eigenvalue $\lambda$
- Generally, an eigenvalue $\lambda$ is associated with an eigenspace $\mathcal{X} \subseteq \mathbb{C}^{n}$ such that each $x \in \mathcal{X}$ is an eigenvector of $\boldsymbol{A}$ with eigenvalue $\lambda$.
- The dimensionality of an eigenspace is at most the multiplicity of an eigenvalue (when less, matrix is defective, otherwise matrix is diagonalizable).
- Each $n \times n$ matrix has up to $n$ eigenvalues, which are either real or complex
- The conjugate of any complex eigenvalue of a real matrix is also an eigenvalue.
- The dimensionalities of all the eigenspaces (multiplicity associated with each eigenvalue) sum up to $n$ for a diagonalizable matrix.
- If the matrix is real, real eigenvalues are associated with real eigenvectors, but complex eigenvalues may not be.


## Eigenvalue Decomposition

- If a matrix $\boldsymbol{A}$ is diagonalizable, it has an eigenvalue decomposition

$$
\boldsymbol{A}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}
$$

where $\boldsymbol{X}$ are the right eigenvectors, $\boldsymbol{X}^{-1}$ are the left eigenvectors and $\boldsymbol{D}$ are eigenvalues

$$
\boldsymbol{A} \boldsymbol{X}=\left[\begin{array}{ll}
\boldsymbol{A} \boldsymbol{x}_{1} & \cdots \boldsymbol{A} \boldsymbol{x}_{n}
\end{array}\right]=\boldsymbol{X} \boldsymbol{D}=\left[\begin{array}{lll}
d_{11} \boldsymbol{x}_{1} & \cdots & d_{n n} \boldsymbol{x}_{n}
\end{array}\right] .
$$

- If $\boldsymbol{A}$ is symmetric, its right and left singular vectors are the same, and consequently are its eigenvectors.
- More generally, any normal matrix, $\boldsymbol{A}^{H} \boldsymbol{A}=\boldsymbol{A} \boldsymbol{A}^{H}$, has unitary eigenvectors.
- $\boldsymbol{A}$ and $\boldsymbol{B}$ are similar, if there exist $\boldsymbol{Z}$ such that $\boldsymbol{A}=\boldsymbol{Z} \boldsymbol{B} \boldsymbol{Z}^{-1}$
- Normal matrices are unitarily similar $\left(\boldsymbol{Z}^{-1}=\boldsymbol{Z}^{H}\right)$ to diagonal matrices
- Symmetric real matrices are orthogonally similar $\left(\boldsymbol{Z}^{-1}=\boldsymbol{Z}^{T}\right)$ to real diagonal matrices
- Hermitian matrices are unitarily similar to real diagonal matrices


## Similarity of Matrices

| matrix | similarity | reduced form |
| ---: | :---: | :--- |
| SPD | orthogonal | real positive diagonal |
| real symmetric | orthogonal | real tridiagonal <br> real diagonal |
| Hermitian | unitary | real diagonal |
| normal | unitary | diagonal |
| real | orthogonal | real Hessenberg |
| diagonalizable | invertible | diagonal |
| arbitrary | unitary <br> invertible | triangular <br> bidiagonal |

## Canonical Forms

- Any matrix is similar to a bidiagonal matrix, giving its Jordan form:

$$
\boldsymbol{A}=\boldsymbol{X}\left[\begin{array}{lll}
\boldsymbol{J}_{1} & & \\
& \ddots & \\
& & \boldsymbol{J}_{k}
\end{array}\right] \boldsymbol{X}^{-1}, \quad \forall i, \quad \boldsymbol{J}_{i}=\left[\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{i}
\end{array}\right]
$$

the Jordan form is unique modulo ordering of the diagonal Jordan blocks.

- Any diagonalizable matrix is unitarily similar to a triangular matrix, giving its Schur form:

$$
\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{T} \boldsymbol{Q}^{H}
$$

where $\boldsymbol{T}$ is upper-triangular, so the eigenvalues of $\boldsymbol{A}$ is the diagonal of $\boldsymbol{T}$. Columns of $Q$ are the Schur vectors.

## Eigenvectors from Schur Form

- Given the eigenvectors of one matrix, we seek those of a similar matrix: Suppose that $\boldsymbol{A}=\boldsymbol{S} \boldsymbol{B} \boldsymbol{S}^{-1}$ and $\boldsymbol{B}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}$ where $\boldsymbol{D}$ is diagonal,
- The eigenvalues of $\boldsymbol{A}$ are $\left\{d_{11}, \ldots, d_{n n}\right\}$
- $\boldsymbol{A}=\boldsymbol{S} \boldsymbol{B} \boldsymbol{S}^{-1}=\boldsymbol{S} \boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1} \boldsymbol{S}^{-1}$ so $\boldsymbol{S} \boldsymbol{X}$ are the eigenvectors of $\boldsymbol{A}$
- Its easy to obtain eigenvectors of triangular matrix $\boldsymbol{T}$ :
- One eigenvector is simply the first elementary vector.
- The eigenvector associated with any diagonal entry (eigenvalue $\lambda$ ) may be obtaining by observing that

$$
\mathbf{0}=(\boldsymbol{T}-\lambda \boldsymbol{I}) \boldsymbol{x}=\left[\begin{array}{ccc}
\boldsymbol{U}_{11} & \boldsymbol{u} & \boldsymbol{T}_{13} \\
& 0 & \boldsymbol{v}^{T} \\
& & \boldsymbol{U}_{33}
\end{array}\right]\left[\begin{array}{c}
-\boldsymbol{U}_{11}^{-1} \boldsymbol{u} \\
1 \\
\mathbf{0}
\end{array}\right],
$$

so it suffices to solve $\boldsymbol{U}_{11} \boldsymbol{y}=-\boldsymbol{u}$ to obtain eigenvector $\boldsymbol{x}$.

## Rayleigh Quotient

- For any vector $\boldsymbol{x}$, the Rayleigh quotient provides an estimate for some eigenvalue of $\boldsymbol{A}$ :

$$
\rho_{\boldsymbol{A}}(\boldsymbol{x})=\frac{\boldsymbol{x}^{H} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{H} \boldsymbol{x}} .
$$

- If $\boldsymbol{x}$ is an eigenvector of $\boldsymbol{A}$, then $\rho_{\boldsymbol{A}}(\boldsymbol{x})$ is the associated eigenvalue.
- Moreover, for $\boldsymbol{y}=\boldsymbol{A x}$, the Rayleigh quotient is the best possible eigenvalue estimate given $\boldsymbol{x}$ and $\boldsymbol{y}$, as it is the solution to $\boldsymbol{x} \alpha \cong \boldsymbol{y}$.
- The normal equations for this scalar-output least squares problem are

$$
\boldsymbol{x}^{T} \boldsymbol{x} \alpha=\boldsymbol{x}^{T} \boldsymbol{y} \quad \Rightarrow \quad \alpha=\frac{\boldsymbol{x}^{T} \boldsymbol{y}}{\boldsymbol{x}^{T} \boldsymbol{x}}=\frac{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}}
$$

## Perturbation Analysis of Eigenvalue Problems

- Suppose we seek eigenvalues $\boldsymbol{D}=\boldsymbol{X}^{-1} \boldsymbol{A} \boldsymbol{X}$, but find those of a slightly perturbed matrix $D+\boldsymbol{\delta} \boldsymbol{D}=\hat{\boldsymbol{X}}^{-1}(\boldsymbol{A}+\boldsymbol{\delta} \boldsymbol{A}) \hat{\boldsymbol{X}}$ :
Note that the eigenvalues of $\boldsymbol{X}^{-1}(\boldsymbol{A}+\boldsymbol{\delta} \boldsymbol{A}) \boldsymbol{X}=\boldsymbol{D}+\boldsymbol{X}^{-1} \boldsymbol{\delta} \boldsymbol{A} \boldsymbol{X}$ are also $D+\boldsymbol{D} D$. So if we have perturbation to the matrix $\|\boldsymbol{\delta} \boldsymbol{A}\|_{F}$, its effect on the eigenvalues corresponds to a (non-diagonal/arbitrary) perturbation $\boldsymbol{\delta} \hat{\boldsymbol{A}}=\boldsymbol{X}^{-1} \boldsymbol{\delta} \boldsymbol{A} \boldsymbol{X}$ of a diagonal matrix of eigenvalues $\boldsymbol{D}$, with norm

$$
\|\boldsymbol{\delta} \hat{\boldsymbol{A}}\|_{F} \leq\left\|\boldsymbol{X}^{-1}\right\|_{2}\|\boldsymbol{\delta} \boldsymbol{A}\|_{F}\|\boldsymbol{X}\|_{2}=\kappa(\boldsymbol{X})\|\boldsymbol{\delta} \boldsymbol{A}\|_{F}
$$

- Gershgorin's theorem allows us to bound the effect of the perturbation on the eigenvalues of a (diagonal) matrix: Given a matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, let $r_{i}=\sum_{j \neq i}\left|a_{i j}\right|$, define the Gershgorin disks as

$$
D_{i}=\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq r_{i}\right\}
$$

The eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of any matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ are contained in the union of the Gershgorin disks, $\forall i \in\{1, \ldots, n\}, \lambda_{i} \in \bigcup_{j=1}^{n} D_{j}$.


[^0]:    ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

