CS 450: Numerical Anlaysis

Lecture 5
Chapter 2 - Linear Systems
Solving Linear Systems

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign
January 31, 2018

Solving Triangular Systems

- $L x=b$ if L is lower-triangular is solved by forward substitution:

$$
\begin{aligned}
& l_{11} x_{1}=b_{1} \\
& l_{21} x_{1}+l_{22} x_{2}=b_{2}
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& x_{1}=b_{1} / l_{11} \\
& x_{2}=\left(b_{2}-l_{21} x_{1}\right) / l_{22} \\
& l_{31} x_{1}+l_{32} x_{2}+l_{33} x_{3}=b_{2}
\end{aligned} \quad \begin{aligned}
& x_{3}=\left(b_{3}-l_{31} x_{1}-l_{32} x_{2}\right) / l_{33}
\end{aligned}
$$

- Computational complexity of forward/backward substitution:

$$
\begin{aligned}
& T(n)=O\left(n^{2}\right) \\
& \frac{n^{2}}{2} \text { mulls } \frac{n^{2}}{2} \text { oddstives }
\end{aligned}
$$

Solving Triangular Systems

- Existence of solution to $L \boldsymbol{x}=\boldsymbol{b}$:

May not exit if some $L_{\text {ir }}=0$, since then L is singular

- Invertibility of L and existence of solution:
olin may L is full rant if each $L_{i i} \neq 0$ exist even (determinant shows this formally. since if $L_{i}:=O_{1}$ bat is not unique $\operatorname{det}(L)=\Pi_{i} L_{i}$,
but can also see that kith espn is not in the sperm of the lest $n-k-1$, sine 4 estop 0)

Properties of Triangular Matrices

- $X Y=Z$ is lower triangular is X and Y are both lower triangular:

- L^{-1} is lower triangular if it exists:

LU Factorization

- An LU factorization consists of a unit-lower-triangular factor L and upper-triangular factor U such that $A=L U$:

$$
\begin{aligned}
& \text { hat } A=L U: \\
& n^{2} \text { variables in } L^{\frac{\hbar^{(n-1)}}{2}}, U \in \frac{n(m+i)}{2} \\
& n^{2} \text { variables in } A
\end{aligned}
$$

Gaussian Elimination

Contradrabun

- The LU factorization may not exist:
Consider matrix $\left[\begin{array}{ll}1 & 2 \\ 2 & 4 \\ 0 & 3\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2_{21} & 1 & 0 \\ 2_{31} & l_{n} & 1\end{array}\right]\left[\begin{array}{cc}a_{21} & u_{12} \\ 0 & a_{22} \\ 0 & 0\end{array}\right]$

$$
\frac{T^{\frac{3}{n 2}}}{n_{22}}=0
$$

$$
=\left[\begin{array}{lll}
1 & & \\
2 & 1 & \\
0 & x_{u} & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & u_{22} \\
0 & 0
\end{array}\right.
$$

Gaussian Elimination Algorithm

- Algorithm for factorization is derived from equations given by $A=L U$:

$$
\begin{aligned}
& \sum\left[\begin{array}{lll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{lll}
l_{11} & \\
l_{21} & C_{22}
\end{array}\right]\left[\begin{array}{lll}
u_{1} & u_{12} \\
& & u_{22}
\end{array}\right] \\
& A_{11}=L_{11} u_{11} \quad L_{11} u_{12}=\Lambda_{12} \quad \Delta I=\square \\
& L_{21} u_{11}=A_{21} \square \square=\square \rightarrow-\quad L_{21} u_{12}+L_{22} u_{22}=d_{22}
\end{aligned}
$$

- The k th column of L is given by the k th elementary matrix $\lambda I_{k}: \underbrace{A_{22}-L_{21} U_{12}}_{L_{21} U_{12}+L_{22} U_{22}=A_{72}}$

$$
A_{22}-L_{21} u_{12}-L_{22} u_{n}
$$

Elimination Matrices

- An elimination matrix M_{k} satisfies the following properties:

Gaussian Elimination with Partial Pivoting

- Partial pivoting permutes rows to make divisor u_{i} s maximal at each step:

$$
A=P L U \quad P^{\top} A=L U
$$

- A row permutation corresponds to an application of a row permutation $\operatorname{matrix} \underbrace{\boldsymbol{P}_{j k}=\boldsymbol{I}-\left(e_{j}-e_{k}\right)\left(\boldsymbol{e}_{j}-e_{k}\right.})^{T}: P^{\top} P=I$

$$
\begin{array}{r}
{\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\left[\begin{array}{ll}
1 & -1
\end{array}\right]=\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]} \\
f_{j 6}=\left[\begin{array}{l}
1, \\
1
\end{array}, 1\right.
\end{array}
$$

Complete Pivoting and Error Bounds

- Complete pivoting permutes rows and columns to make divisor $u_{i i}$ is maximal at each step:

$$
\text { papal potion }|L|_{1+3} \leq 1
$$

- For LU, the backward error δA, so that $\hat{L} \hat{U}=A+\delta A$, satisfies bound $\mid \boldsymbol{\delta} A_{\text {(v) }} \leq \epsilon(|\hat{\hat{k}}| \cdot|\hat{\boldsymbol{U}}|)_{i j}$:
chorus

absolute co lu
$-$

