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Interpolation
I Given (t1, y1), . . . , (tm, ym) with nodes t1 < · · · < tm an interpolant f satisfies:

f(ti) = yi ∀i.

I The number of possible interpolant functions is infinite, but there is a unique
degree m− 1 polynomial interpolant.

I Error of interpolant can be quantified with knowledge of true function g, (e.g. by
considering maxt∈[t1,tm] |f(t)− g(t)|) .

I Interpolant is usually constructed as linear combinations of basis functions
{φj}nj=1 = φ1, . . . , φn so f(t) =

∑
j xjφj(t).

I Interpolant exists if n ≥ m and is unique for a given basis if n = m.
I Vandermonde matrix A = V (t, {φj}nj=1) satisfies aij = φj(ti) so Ax = y.
I Coe�cients x of interpolant are obtained by solving Vandermonde system

Ax = y for x.



Polynomial Interpolation

I The choice of monomials as basis functions, φj(t) = tj−1 yields a degree
n− 1 polynomial interpolant:

I Corresponding Vandermonde matrix A = V (t, {tj−1}nj=1) satisfies aij = tj−1i .

I Polynomial interpolants are easy to evaluate and do calculus on:
I Horner’s rule requires n products and n− 1 additions:

f(t) = x1 + t(x2 + t(x3 + . . .)).

I O(n) work to determine new coe�cients for di�erentiation and integration.

Activity: Interpolation in Monomial Basis

https://relate.cs.illinois.edu/course/cs450-f18/flow/inclass-interpolation-monomial/start/


Conditioning of Interpolation
I Conditioning of interpolation matrix A depends on basis functions and

coordinates t1, . . . , tm:
I ti defines the ith row, so columns tend to be nearly linearly-dependent if
ti ≈ ti+1

I φj defines the jth column, so rows tend to be nearly linearly-dependent if φj is
nearly in the span of the other basis functions: span({φi}ni=1,i6=j)

I The Vandermonde matrix tends to be ill-conditioned:
I Monomials of increasing degree increasingly resemble one-another, so rows of

A become nearly the same, and consequently κ(A) grows.
I The conditioning can be improved somewhat by shifting and scaling points so

that each ti ∈ [−1, 1].
I Consequently, we will consider alternative polynomial bases, seeking to improve

the e�ciency and conditioning associated with the Vandermonde matrix.
I However, generally, we will obtain the same polynomial interpolant. To improve

interpolant quality (e.g. avoid oscillations), the nodes and not the basis
functions need to be changed.

Demo: Monomial interpolation

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/07-interpolation/Monomial interpolation.html


Lagrange Basis
I n-points fully define the unique (n− 1)-degree polynomial interpolant in the

Lagrange basis:

φj(t) =

n∏
k=1,k 6=j

(t− tk)︸ ︷︷ ︸
num

/

n∏
k=1,k 6=j

(tj − tk)︸ ︷︷ ︸
den

I Note that den is never 0,
I num is 0 whenever t = tk for some k, so φj(ti) = 0 if i 6= j,
I when t = tj then num and dem are the same, so φj(tj) = 1,
I consequently, the Lagrange Vandermonde matrix V (t, {φj}nj=1) = I.

I Lagrange polynomials yield an ideal Vandermonde system, but the basis
functions are hard to evaluate and do calculus on:

I Evaluation requires O(n2) work naively and may incur cancellation error.
I Di�erentiation and integration are also harder than with monomials.



Newton Basis

I The Newton basis functions φj(t) =
∏j−1

k=1(t− tk) with φ1(t) = 1 seek the best
of monomial and Lagrange bases:

I Evaluation with Newton basis can use recurrence,

φj(t) = φj−1(t)(t− tj).

I Divided di�erence recurrence enables fast computation of coe�cients.

I The Newton basis yields a triangular Vandermonde system:

I Note that aij = φj(ti) = 0 for all i < j, so A is lower-triangular.
I Given A, can use back-substitution to obtain the solution in O(n2) work.
I Can use evaluation recurrence to compute A with O(n2) work, but divided

di�erence recurrence is more stable than forming A.



Orthogonal Polynomials
I Recall that good conditioning for interpolation is achieved by constructing a

well-conditioned Vandermonde matrix, which is the case when the columns
(corresponding to each basis function) are orthonormal. To construct robust
basis sets, we introduce a notion of orthonormal functions:

I To compute overlap between basis functions, use a w-weighted integral as inner
product,

〈p, q〉w =

∫ ∞
−∞

p(t)q(t)w(t)dt.

I {φi}ni=1 are orthonormal with respect to the above inner product if

〈φi, φj〉w = δij =

{
1 if i = j

0 otherwise
.

I The corresponding norm is given by ||f || =
√
〈f, f〉w.



Legendre Polynomials
I The Gram-Schmidt orthogonalization procedure can be used to obtain an

orthonormal basis with the same span as any given arbitrary basis:
Given orthonormal functions {φ̂i}k−1i=1 obtain kth function from φk via

φ̂k(t) =
ψ̂k(t)

||ψ̂k||
, ψk(t) = φk(t)−

k−1∑
i=1

〈φk(t), φ̂i(t)〉wφ̂i(t)

I The Legendre polynomials are obtained by Gram-Schmidt on the monomial

basis, with w(t) =

{
1 : −1 ≤ t ≤ 1

0 : otherwise
and normalized so φ̂i(1) = 1.

For example, {φ̂i(t)}3i=1 = {1, t, (3t2 − 1)/2} since

ψ1(t) = 1, ψ2(t) = t− 1

2

∫ 1

−1
tdt = t

ψ3(t) = t2 − 1

2

∫ 1

−1
t2dt− t

∫ 1

−1
t3dt = t2 − 1/3

Demo: Orthogonal Polynomials

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/07-interpolation/Orthogonal Polynomials.html


Chebyshev Basis
I Chebyshev polynomials φj(t) = cos((j − 1) arccos(t)) and Chebyshev nodes
ti = cos

(
2i−1
2n π

)
provide a way to pick nodes t1, . . . , tn along with a basis, to

yield perfect conditioning:
I They satisfy the recurrence φ1(t) = 1, φ2(t) = t, φi+1(t) = 2tφi(t)− φi−1(t)
I The Chebyshev basis functions are orthonormal with respect to

w(t) =

{
1/(1− t2)1/2 : −1 ≤ t ≤ 1

0 : otherwise
.

I The Chebyshev nodes ensure orthogonality of the columns of A, since
n∑

k=1

φl(tk)φj(tk) =

n∑
k=1

cos

(
(l − 1)(2k − 1)

2n
π

)
cos

(
(j − 1)(2k − 1)

2n
π

)
is zero whenever j 6= l due to periodicity of the summands.

Demo: Chebyshev interpolation
Activity: Chebyshev Interpolation

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/07-interpolation/Chebyshev interpolation.html
https://relate.cs.illinois.edu/course/cs450-f18/flow/inclass-chebyshev/start/


Chebyshev Nodes Intuition

I Note equi-oscillation property, successive extrema of Tk = φk have the same
magnitude but opposite sign.

I Set of k Chebyshev nodes of are given by zeros of Tk and are abscissas of
points uniformly spaced on the unit circle.

Demo: Jump with Chebyshev Nodes

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/07-interpolation/Jump with Chebyshev Nodes.html


Error in Interpolation
We show by induction that given degree n polynomial interpolant f̃ of f the error
E(t) = f(t)− f̃(t) has n zeros t1, . . . , tn and there exist y1, . . . , yn so

E(t) =

∫ t

t1

∫ w0

y1

· · ·
∫ wn−1

yn

f (n+1)(wn)dwn · · · dw0 (1)

E(t) = E(t1) +

∫ t

t1

E′(w0)dw0 (2)

Now note that for each of n− 1 consecutive pairs ti, ti+1 we have∫ ti+1

ti

E′(t)dt = E(ti+1)− E(ti) = 0

and so there are n− 1 zeros zi ∈ (ti, ti+1) such that E′(zi) = 0.
The inductive hypothesis on E′ then gives

E′(w0) =

∫ w0

z1

∫ w1

y2

· · ·
∫ wn−1

yn

f (n+1)(wn)dwn · · · dw1 (3)

Substituting (3) into (2), we obtain (1) with y1 = z1.



Interpolation Error Bounds
I Consequently, polynomial interpolation satisfies the following error bound:

|E(t)| ≤
maxs∈[t1,tn] |f (n+1)(s)|

n!

n∏
i=1

(t− ti) for t ∈ [t1, tn]

Note that the Choice of Chebyshev nodes decreases this error bound at the
extrema, equalizing it with nodes that are in the middle of the interval.

I Letting h = tn − t1 (often also achieve same for h as the node-spacing
ti+1 − ti), we obtain

|E(t)| ≤
maxs∈[t1,tn] |f (n+1)(s)|

n!
hn = O(hn) for t ∈ [t1, tn]

Suggests that higher-accuracy can be achieved by
I adding more nodes (however, high polynomial degree can lead to unwanted

oscillations)
I shrinking interpolation interval (suggests piecewise interpolation)

Demo: Interpolation Error

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/07-interpolation/Interpolation Error.html


Piecewise Polynomial Interpolation
I The kth piece of the interpolant is typically chosen as polynomial on [ti, ti+1]

I Typically low-degree polynomial pieces used, e.g. cubic.
I Degree of piecewise polynomial is the degree of its pieces.
I Continuity is automatic, di�erentiability can be enforced by ensuring derivative

of pieces is equal at knots (nodes at which pieces meet).

f(t) =


t ∈ [t1, t2] : f1(t)

...
t ∈ [tn−1, tn] : fn−1(t)

,∀i ∈ [2, n− 1], fi−1(ti) = fi(ti) = yi

I Hermite interpolation ensures consecutive interpolant pieces have same
derivative at each knot ti:

I Hermite interpolation ensures di�erntiability of the interpolant
∀i ∈ [2, n− 1], f ′i−1(ti) = f ′i(ti)

I Various further constraints can be placed on the interpolant if its degree is at
least 3, since otherwise the system is underdetermined.

Demo: Composite Gauss Interpolation Error

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/07-interpolation/Composite Gauss Interpolation Error.html


Spline Interpolation
I A spline is a (k − 1)-time di�erentiable piecewise polynomial of degree k:

Cubic splines are di�erent from Hermite cubics
I 2(n− 1) equations needed to interpolate data
I n− 2 to ensure continuity of derivative
I n− 2 to ensure continuity of second derivative for cubic splines

Overall there are 4(n− 1) coe�cients in the interpolant.
I The resulting interpolant coe�cients are again determined by an

appropriate generalized Vandermonde system:
A natural spline obtains 4(n− 1) constraints by forcing f ′′(t1) = f ′′(tn) = 0.
Given cubic pieces p(t) and q(t) and nodes t1, t2, t3 (where t2 is a knot) the
generalized Vandermonde system for a two-piece cubic natural spline
consists of 8 equations with 8 unknowns:

p(t1) = y1, p′′(t1) = 0

p(t2) = y2, q(t2) = y2, p′(t2) = q′(t2), p′′(t2) = q′′(t2)

q(t3) = y3, q′′(t3) = 0



B-Splines
B-splines provide an e�ective way of constructing splines from a basis:

I The basis functions can be defined recursively with respect to degree:

vki (t) =
t− ti

ti+k − ti
, φ0i (t) =

{
1 ti ≤ t ≤ ti+1

0 otherwise

φki (t) = vki (t)φ
k−1
i (t) + (1− vki+1(t))φ

k−1
i+1 (t), f(t) =

n∑
i=1

ciφ
k
i (t)

I φ1i is a linear hat function that increases from 0 to 1 on [ti, ti+1] and
decreases from 1 to 0 on [ti+1, ti+2].

I φki is is positive on [ti, ti+k+1] and zero elsewhere.
I The B-spline basis spans all possible splines of degree k with nodes {ti}ni=1.
I The B-spline basis coe�cients are determined by a Vandermonde system

that is lower-triangular and banded (has k subdiagonals), and need not
contain di�erentiability constraints, since f(t) is a sum of φki s.
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