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Interpolation

» Given (t1,y1),. .., (tm,ym) With nodes t; < --- < t,,, an interpolant f satisfies:

f(t) =y Vi

» The number of possible interpolant functions is infinite, but there is a unique
degree m — 1 polynomial interpolant.

» Error of interpolant can be quantified with knowledge of true function g, (e.g. by
considering maxcyy, +,.11f(t) — g(t)]) .

» Interpolant is usually constructed as linear combinations of basis functions

Interpolant exists if n > m and is unique for a given basis if n = m.

v

v

Vandermonde matrix A =V (¢,{¢;}}_,) satisfies a;; = ¢;(t;) S0 Ax = y.

v

Coefficients x of interpolant are obtained by solving Vandermonde system
Ax =y for x.



Activity: Interpolation in Monomial Basis

Polynomial Interpolation

» The choice of monomials as basis functions, ¢;(t) = t/~! yields a degree
n — 1 polynomial interpolant:

> Corresponding Vandermonde matrix A = V (¢, {t/~'}"_) satisfies a;; =t .
» Polynomial interpolants are easy to evaluate and do calculus on:
» Horner’s rule requires n products and n — 1 additions:
f@)=x1 +t(za +t(xs+...)).

» O(n) work to determine new coefficients for differentiation and integration.


https://relate.cs.illinois.edu/course/cs450-f18/flow/inclass-interpolation-monomial/start/

ey . . Demo: Monomial interpolation
Conditioning of Interpolation
» Conditioning of interpolation matrix A depends on basis functions and
coordinates t1, ..., tm:
» t; defines the ith row, so columns tend to be nearly linearly-dependent if
ti ~ti1
» ¢, defines the jth column, so rows tend to be nearly linearly-dependent if ¢; is
nearly in the span of the other basis functions: span({qsi};’:l#j)
» The Vandermonde matrix tends to be ill-conditioned:
» Monomials of increasing degree increasingly resemble one-another, so rows of
A become nearly the same, and consequently x(A) grows.
» The conditioning can be improved somewhat by shifting and scaling points so
thateach t; € [-1,1].
» Consequently, we will consider alternative polynomial bases, seeking to improve
the efficiency and conditioning associated with the Vandermonde matrix.

» However, generally, we will obtain the same polynomial interpolant. To improve
interpolant quality (e.g. avoid oscillations), the nodes and not the basis
functions need to be changed.


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/07-interpolation/Monomial interpolation.html

Lagrange Basis

» n-points fully define the unique (n — 1)-degree polynomial interpolant in the
Lagrange basis:

v

Note that den is never 0,
» num is 0 whenever t = t;, for some k, so ¢;(t;) = 0ifi # j,
» whent =t; then num and dem are the same, so ¢;(t;) =1,
» consequently, the Lagrange Vandermonde matrix V' (¢,{¢;}7_,) = L.
» Lagrange polynomials yield an ideal Vandermonde system, but the basis
functions are hard to evaluate and do calculus on:
» Evaluation requires O(n?) work naively and may incur cancellation error.

» Differentiation and integration are also harder than with monomials.



Newton Basis

> The Newton basis functions ¢, (t) = [T/_}(t — ti) with ¢ (t) = 1 seek the best
of monomial and Lagrange bases:
» Evaluation with Newton basis can use recurrence,
$;(t) = ¢j—1(t)(t — t;).
» Divided difference recurrence enables fast computation of coefficients.

» The Newton basis yields a triangular Vandermonde system:

» Note that a;; = ¢,(t;) =0 forall i < j, so A is lower-triangular.
» Given A, can use back-substitution to obtain the solution in O(n?) work.

» Can use evaluation recurrence to compute A with O(n?) work, but divided
difference recurrence is more stable than forming A.



Orthogonal Polynomials

» Recall that good conditioning for interpolation is achieved by constructing a
well-conditioned Vandermonde matrix, which is the case when the columns
(corresponding to each basis function) are orthonormal. To construct robust
basis sets, we introduce a notion of orthonormal functions:

» To compute overlap between basis functions, use a w-weighted integral as inner
product,

(0, Q)w = /_oo p(t)q(t)w(t)dt.

» {¢;}_, are orthonormal with respect to the above inner product if

1 ifi=j
0 otherwise

(Gi, Dj)w = 0ij = {

» The corresponding norm is given by || f|| = /{f, f)w-



Demo: Orthogonal Polynomials

Legendre Polynomials

» The Gram-Schmidt orthogonalization procedure can be used to obtain an
orthonormal basis with the same span as any given arbitrary basis:

Given orthonormal functions {qsZ obtam kth function from ¢y, via
k—1
. Vit .
ae) = 2O g6 = d(t) — S (66(0), i)t
||| i=1
» The Legendre polynomials are obtained by Gram-Schmidt on the monomial
1:-1<t<1 -
basis, with w(t) = - - and normalized so ¢;(1) = 1.
0 : otherwise

For example, {¢;(t)}3_, = {1,t, (3t> — 1)/2} since

1
Di(t) =1, wz(t)zt—;/ bt — t

-1

1 1
¢3(t):t2—;/ tzdt—t/ t3dt =t* —1/3
-1

-1


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/07-interpolation/Orthogonal Polynomials.html

Demo: Chebyshev interpolation

Che bys hev Basis Activity: Chebyshev Interpolation

» Chebyshev polynomials ¢;(t) = cos((j — 1) arccos(t)) and Chebyshev nodes
t; = cos (2-17) provide a way to pick nodes t1,...,t, along with a basis, to

yield perfect conditioning:

» They satisfy the recurrence ¢1(t) =1, ¢2(t) = t, diy1(t) = 2td;(t) — Pi—1(t)
» The Chebyshev basis functions are orthonormal with respect to

w(t) = {1/0 _e)2 L oi<i<

0 . otherwise

» The Chebyshev nodes ensure orthogonality of the columns of A, since

S0 3o (I o (U002,

is zero whenever j # | due to periodicity of the summands.


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/07-interpolation/Chebyshev interpolation.html
https://relate.cs.illinois.edu/course/cs450-f18/flow/inclass-chebyshev/start/

Demo: Jump with Chebyshev Nodes

Chebyshev Nodes Intuition

» Note equi-oscillation property, successive extrema of T;, = ¢, have the same
magnitude but opposite sign.

» Set of kK Chebyshev nodes of are given by zeros of T}, and are abscissas of
points uniformly spaced on the unit circle.


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/07-interpolation/Jump with Chebyshev Nodes.html

Error in Interpolation
We show by induction that given degree n polynomial interpolant f of f the error

E(t) = f(t) — f(t) has n zeros ty,...,t, and there exist y1,...,y, SO

t wo Wp—1
E(t>:/tl /yl /n f(”“)(wn)dwn---dwg (1)
t
E(t)=E(t1) + | E'(wo)dwo (2)

t1
Now note that for each of n — 1 consecutive pairs t;, t;11 we have

tit1
E'(t)dt = E(ti1) — E(t:) =0

t;
and so there are n — 1 zeros z; € (t;,t;+1) such that E'(z;) = 0.
The inductive hypothesis on E' then gives

wo w1 Wn—1
E/(wo) = / / / D () - -~ duy (3)
z1 Y2 n

Substituting (3) into (2), we obtain (1) with y1 = z1.



Demo: Interpolation Error

Interpolation Error Bounds

» Consequently, polynomial interpolation satisfies the following error bound:

(n+1) n
MaAXge [ty 2] |f (s)] H(t —t;) for t € [t1,ty]

=1

[E@)] <

n!

Note that the Choice of Chebyshev nodes decreases this error bound at the
extrema, equalizing it with nodes that are in the middle of the interval.

» Letting h = t,, — t1 (often also achieve same for h as the node-spacing
ti+1 — ti), we obtain

maxe(s, 1,1 1" (s)]

[E()] <

' h" = O(h"™) for te [t1,t,]
n.
Suggests that higher-accuracy can be achieved by
» adding more nodes (however, high polynomial degree can lead to unwanted
oscillations)
» shrinking interpolation interval (suggests piecewise interpolation)


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/07-interpolation/Interpolation Error.html

Demo: Composite Gauss Interpolation Error

Piecewise Polynomial Interpolation
» The kth piece of the interpolant is typically chosen as polynomial on [t;,¢; 1]
» Typically low-degree polynomial pieces used, e.g. cubic.

» Degree of piecewise polynomial is the degree of its pieces.
» Continuity is automatic, differentiability can be enforced by ensuring derivative

of pieces is equal at knots (nodes at which pieces meet).
te [tl,tg] : fl (t)
ft) = : Vi€ [2,n — 1], fioi(ts) = fi(t:) = yi
te [tnflvtn] : fnfl(t)

» Hermite interpolation ensures consecutive interpolant pieces have same
derivative at each knot t;:

» Hermite interpolation ensures differntiability of the interpolant
Vi€ [2,n 1], £ (t) = £1(t:)

» Various further constraints can be placed on the interpolant if its degree is at
least 3, since otherwise the system is underdetermined.


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/07-interpolation/Composite Gauss Interpolation Error.html

Spline Interpolation

» A splineis a (k — 1)-time differentiable piecewise polynomial of degree k:

Cubic splines are different from Hermite cubics
» 2(n — 1) equations needed to interpolate data
» n — 2 to ensure continuity of derivative
» n — 2 to ensure continuity of second derivative for cubic splines

Overall there are 4(n — 1) coefficients in the interpolant.

» The resulting interpolant coefficients are again determined by an
appropriate generalized Vandermonde system:

A natural spline obtains 4(n — 1) constraints by forcing f"(t1) = f"(t,) = 0.
Given cubic pieces p(t) and q(t) and nodes t1,ts,t3 (Where ts is a knot) the
generalized Vandermonde system for a two-piece cubic natural spline
consists of 8 equations with 8 unknowns:
p(t1) =y, p'(t1) =0
p(t2) =y2,  q(t2) = w2, P'(t2) =q(t2), p"(t2) =" (t2)
q(t3) =y3, ¢"(t3) =0



B-Splines
B-splines provide an effective way of constructing splines from a basis:
» The basis functions can be defined recursively with respect to degree:

t—t; 1 6 <t<1;
vi(t) = ———, o3 (t) = o
tivk — t; 0 otherwise
G (1) = vF(£)E 1 (8) + (1 — oy ()6l () ~ 3k
=1

» ¢} is a linear hat function that increases from 0 to 1 on [t;, ¢;11] and
decreases from 1 to 0 on [t;y1, tita].

> qbf is is positive on [t;,t;1,11] and zero elsewhere.

» The B-spline basis spans all possible splines of degree k with nodes {¢;} ;.

» The B-spline basis coefficients are determined by a Vandermonde system
that is lower-triangular and banded (has k subdiagonals), and need not
contain differentiability constraints, since f(t) is a sum of ¢¥s.
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