CS 450: Numerical Anlaysis Lecture 10 Chapter 4 – Eigenvalue Problems Theory of Eigenvalue Solvers

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

February 16, 2018

Perturbation Analysis of Eigenvalue Problems

Suppose we seek eigenvalues $D = X^{-1}AX$, but find those of a slightly perturbed matrix $\boldsymbol{D} + \boldsymbol{\delta} \boldsymbol{D} = \boldsymbol{\hat{X}}^{-1} (\boldsymbol{A} + \boldsymbol{\delta} \boldsymbol{A}) \boldsymbol{\hat{X}}$: $D + \delta D = \hat{x}^{-1}A\hat{x} + \hat{x}^{-1}SA\hat{x}$ $= X^{-1}(A^{\perp}SA)X = X^{-1}AX + X^{\perp}SAX$ $eig(A + SA) = D + SD = eig(D + x - 1 SA \times)$ 11x - (A X) 5 R(X) | SAI = 11×-111 11×11 11 \$ A /1

(matrix is diagonal) D = A

L-X

for some perturbation (non-diagonal) SA

$$eig(A : SA) = D + SD$$
 (A) (44er from D
 $D + SD = \hat{X}^{-1}(A : SA \setminus \hat{X})$
 $\hat{X} = J + SX \mid SD = \hat{X}^{-1}(SAX - SXA + ASX)$
 $\hat{X} \approx J - SX \mid SD = \hat{X}^{-1}(SAX - SXA + ASX)$
 $\hat{X} \approx J - SX \mid SD = \hat{X}^{-1}(SAX - SXA + ASX)$

Gershgorin Theorem

A = D + O

Another way to show that the eigenvalues of a matrix are insensitive to perturbation is via Gershgorin theorem, which states that

 $\lambda(A) \in \bigcup_{A:st} p(A:s, r;)$

 $r_{i} = \hat{\mathcal{E}} |O_{ij}|$

G

And Ass

Conditioning of Particular Eigenpairs

A=X"NX

 \triangleright Consider the effect of a matrix perturbation on an eigenvalue λ associated with a right eigenvector x and a left eigenvector y^H , $\lambda = y^H A x / y^H x$

J <4, 1A + FA' Connect the notion of the angle between left and right eigenvectors to the magnitude of off-diagonal entries in the Schur form

<4, Ax > = <

y, x> < < y, 2A = < y, 2A

Orthogonal Iteration via QR Iteration
In orthogonal iteration
$$\hat{Q}_{i+1}\hat{R}_{i+1} = A\hat{Q}_i$$
 QR iteration computes
 $A: G_1 P_1 A_{i+1} = R_i Q_i = \hat{Q}_{i+1}^T A \hat{Q}_{i+1}$ at iteration i:
 $U = \lim_{i \to \infty} A_i = \lim_{i \to \infty} \hat{Q}_{i+1} A \hat{Q}_i$
 $i \to \infty$
 $A: = \lim_{i \to \infty} A_i = \lim_{i \to \infty} \hat{Q}_{i+1} A \hat{Q}_i$
 $i \to \infty$
 $A: = 0, A \hat{Q}_i$
 $A \hat{Q}_i = \hat{Q}_i A \hat{Q}_i$
 $A \hat{Q}_i = \hat{Q}_i A \hat{Q}_i = \hat{Q}_i \hat{Q} \hat{Q}_i$
 $\hat{Q}_{i+1} \hat{R}_{i+1} = \hat{Q} \hat{Q}_i R_i$
 $\hat{Q}_{i+1} \hat{R}_{i+1} = \hat{R}_i \hat{Q}_i R_i$
 $\hat{Q}_{i+1} \hat{R}_{i+1} = \hat{R}_i \hat{Q}_i \hat{Q}_i$
 $= R_i \hat{Q}_i$

QR Iteration with Shift

Describe QR iteration with shifting

LO: R.J. OR(A: - J.I)

$$A_{i_{i_1}} = R_i Q_i + \sigma_i I$$

Discuss how shift can be selected

$$\sigma_i : (A_i)_{nn}$$

$$A_{i+1} = (A_i - \sigma_i) (A_i - \sigma_i)$$

Hessenberg and Tridiagonal Form

Describe reduction to tridiagonal form in symmetric case

QR Iteration Complexity

Compare complexity of QR iteration for various matrices

with Lidiagonal form BR. Lochen cuche O(n) per thether Keyescherg Form O(n2) per Arshon Cerved fimmer O(n3) per , heathor