CS 450: Numerical Anlaysis

Lecture 10
Chapter 4 - Eigenvalue Problems
Theory of Eigenvalue Solvers

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

February 16, 2018

Perturbation Analysis of Eigenvalue Problems

- Suppose we seek eigenvalues $\boldsymbol{D}=\boldsymbol{X}^{-1} \boldsymbol{A} \boldsymbol{X}$, but find those of a slightly perturbed matrix $D+\boldsymbol{\delta} D=\hat{X}^{-1}(\boldsymbol{A}+\underline{\boldsymbol{\delta A}}) \hat{X}$:

$$
\begin{aligned}
D+\delta D= & \hat{x}^{-1} A \hat{x}+\hat{x}^{-1} \delta A \hat{x} \\
= & X^{-1}(A 1 \delta A) x=\underbrace{x^{-1} A X}_{D}+x^{-1} \delta A X \\
\operatorname{eig}(A+\delta A)=D+\delta D=\operatorname{erg}(D & +\underbrace{\left.x^{-1} \delta A x\right)} \\
& \left\|x^{-1} s A x\right\| \leq R(x)\|\delta A\| \\
= & \left\|x^{-1}\right\|\|x\|\|A\|
\end{aligned}
$$

$D=A$ (matrix is diagunal) $x=I$
for some pestulation (non-diagonal) \&A $\operatorname{eig}(A+\delta A)=D+8 D$ dideter from D

Gershgorin Theorem

- Another way to show that the eigenvalues of a matrix are insensitive to perturbation is via Gershgorin theorem, which states that

$$
\begin{gathered}
A=D+0 \\
+D
\end{gathered}
$$

$$
\lambda(A) \in \left\lvert\, \begin{aligned}
& p\left(d_{i}, r_{i}\right) \\
& 1 \rightarrow r a d i n \\
& d . s e c e n t e r
\end{aligned}\right.
$$

$$
r_{i}=\sum_{j=1}^{n}\left|O_{i j}\right|
$$

Conditioning of Particular Eigenpairs

- Consider the effect of a matrix perturbation on an eigenvalue λ associated with a right eigenvector \boldsymbol{x} and a left eigenvector $\boldsymbol{y}^{H}, \lambda=\boldsymbol{y}^{H} \boldsymbol{A} \boldsymbol{x} / \boldsymbol{y}^{H} \boldsymbol{x}$
$A=X^{-1} D X$

$$
\left[\left.\right|_{x}\right]\left[\cdot x\left[\frac{y}{}\right]\right.
$$

$$
\langle y, x\rangle, \frac{\langle y, A x\rangle}{\langle y, x\rangle}=\frac{\langle y, \lambda x\rangle}{\langle y, x\rangle}
$$

- Connect the notion of the angle between left and right eigenvectors to the magnitude of off-diagonal entries in the Schur form

Orthogonal Iteration via QR Iteration
hats ${ }^{1}$ for orthegmal
$\begin{aligned} & \\ & \boldsymbol{A}_{i}=\boldsymbol{\sigma}_{1} \boldsymbol{R}_{j} \boldsymbol{A}_{i+1}=\boldsymbol{R} \\ & \boldsymbol{R}_{i} \boldsymbol{Q}_{i}=\hat{\boldsymbol{Q}}^{T}\end{aligned}$
$\underline{A_{i}=\boldsymbol{O}_{1} \boldsymbol{R}_{1}} \boldsymbol{A}_{i+1}=\boldsymbol{R}_{i} \boldsymbol{Q}_{i}=\hat{\boldsymbol{Q}}_{i+1}^{T} \boldsymbol{A} \hat{\mathbf{Q}}_{i+1}$ at iteration i

$$
U=\lim _{: \rightarrow \infty} A_{:}=\lim _{i \rightarrow \infty} \hat{U}_{i+1}^{\top} A \hat{Q}
$$

true $\rightarrow A_{:}: \hat{Q}_{:}^{+} A Q_{:}:$
induction $A_{i=1}=\hat{Q}_{i+1}^{T} A Q_{i+1}$
R iteration computes
itucthon
,

Aㄴ․ $=Q_{1}$
\square

$$
\underbrace{\left[\hat{Q}_{i}, \hat{R}_{i 21}\right]}_{i, 1}=\operatorname{CiP}\left(\frac{A \hat{Q}_{i}}{1}\right)
$$

$$
A \hat{Q}_{i}=\hat{Q}_{i} A_{i}=\hat{Q}_{i}
$$

$$
\left.\begin{array}{rl}
\frac{\hat{Q}_{i+1} \hat{R}_{i+1}}{} & =\hat{Q} Q_{i} R_{i} \\
\hat{Q}_{i+1}^{\top} A Q_{i+1} & =\hat{R}_{i+1} \hat{Q}_{i}^{\top} \hat{Q}_{i+1} \\
& =R_{i} Q_{i}^{c}
\end{array}\right)
$$

QR Iteration with Shift

- Describe QR iteration with shifting

$$
\begin{aligned}
{\left[Q_{i}, R_{i}\right] } & =Q R\left(A_{i}-\sigma_{i} I\right) \\
A_{i n} & =R_{i} Q_{i}+\sigma_{i} I
\end{aligned}
$$

- Discuss how shift can be selected

$$
A_{i+1}=a_{i}^{+}\left(A_{i}-\sigma_{i} T\right) \theta_{i}=\sigma_{i} I
$$

$\bar{\sigma}_{i}=\left(A_{i}\right)_{n n}$

$$
A_{i}=(\square)(\Pi)
$$

Hessenberg and Tridiagonal Form

- Describe reduction to Hessenberg form

- Describe reduction to tridiagonal form in symmetric case
in symmetric case, s.m.lentry Lrarfunathos introdeen to rows and wo

QR Iteration Complexity

- Compare complexity of QR iteration for various matrices
with Lidiagonal form QR.terchorn cocks $O(n)$ per iteration thessentery form
$O\left(n^{2}\right)$ per breton Cental for $O\left(n^{3}\right)$ per iterator

