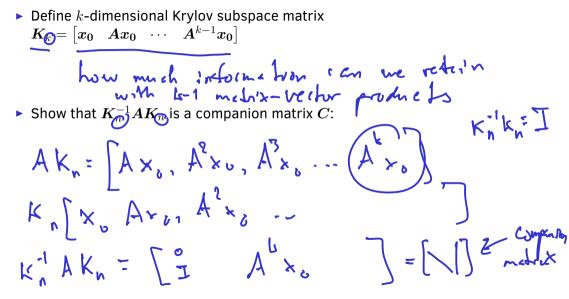
CS 450: Numerical Anlaysis Lecture 12 Chapter 4 – Eigenvalue Problems Krylov Subspace Methods and Applications of Eigenvalue Problems

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

February 23, 2018

Introduction to Krylov Subspace Methods



Krylov Subspaces

Given QR = K_k, we obtain an orthonormal basis for the Krylov subspace, K(A, x₀) = span(Q): Span(G) = span(K_k) = Krylov subspace = Z poly(A) ×, i where poly(A) is hyree k-1

Consider whether k - 1 steps of power iteration starting from x_0 lead to an approximation in the Krylov subspace, also consider QR (subspace) iteration: $Q^T A Q = Q^T A K_K R^1 = C$ $A K_K R^{-1}$ $A K_K R^{-1}$

Krylov Subspace Methods

► Given QR = K_k, we obtain an orthonormal basis for the Krylov subspace and H_k = Q^TAQ which minimizes ||AQ - QH||₂:

$$\begin{array}{ccc} AQH' \cong Q & A^{\pm} H \in V^{\intercal} \\ \widehat{\square} & 1 & \square & H^{\pm} = Q^{\intercal} V \in V^{\intercal} Q \\ \Pi & H^{\pm} = Q^{\intercal} V \in V^{\intercal} Q = Q^{\intercal} A Q \end{array}$$

• H_k is Hessenberg, because the companion matrix C is Hessenberg:

Rayleigh-Ritz Procedure

- The eigenvalues/eigenvectors of H_k are the Ritz values/vectors:
 H_b X_k = XP_k R_i + z values = lergert k erg-vals of H_b X_k = XP_k R_i + z vectors
- The Ritz vectors and values are the *ideal approximations* of the actual eigenvalues and eigenvectors based on only H_k and Q:

Arnoldi Iteration

U

• Arnoldi iteration computes H directly using the recurrence $q_i^T A q_j = h_{ij}$:

$$q_{i}A q_{j} = h_{ij}$$

$$q_{j}A q_{i} = \sum_{i} h_{ij} q_{ij} q_{ij}$$

$$A = a_{h}^{T} H a$$

$$A = a_{h}^{T} H$$

Lanczos Iteration

Lanczos iteration provides a method to reduce a symmetric matrix to tridiagonal matrix:

After each matrix-vector product, it suffices to orthogonalize with respect to two previous vectors:

Cost Krylov Subspace Methods

Consider a matrix with m nonzeros, what is the cost of a matrix-vector O(m) O(m=n) dense O(n2) Syricely m>n Kis cost of O(km) to comple does it cost to orthogonalize the vector at the lith it with a product?

How much does it cost to orthogonalize the vector at the kth iteration?

Restarting Krylov Subspace Methods

In finite precision, Lanczos generally loses orthogonality, while orthogonalization in Arnoldi can become prohibitively expensive:

Consequently, in practice low-dimensional Krylov subspace methods are constructed repeatedly using carefully selected new starting vectors:

Convergence of Lanczos Iteration

Spectrum 1, 22, -

Cauchy interlacing theorem: eigenvalues of H_{i} $\tilde{\lambda}_{1} \geq \cdots \geq \tilde{\lambda}_{n}$ with respect to eigenvalues of A, $\lambda_{1} \geq \cdots \geq \lambda_{n}$ satisfy $\lambda_{i} \neq \tilde{\lambda}_{i} \neq \lambda_{n-k+i}$ kerel $x \neq x \neq x$

and greatest

Applications of Eigenvalue Problems: Matrix Functions

• Given $A = XDX^{-1}$ how can we compute A^k ?

 $A^{2} : \times DX \times DX^{-1} = X D^{2} X^{-1}$ $A^{k} : X D^{k} X^{-1} \qquad \text{if } X \text{ is definition}$ $A^{k} : X D^{k} X^{-1} \qquad \text{if } X \text{ is definition}$ $A^{k} : X D^{k} X^{-1} \qquad \text{if } X \text{ is definition}$ $A^{k} : X D^{k} X^{-1} \qquad \text{if } X \text{ is definition}$ $A^{k} : X D^{k} X^{-1} \qquad \text{if } X \text{ is definition}$ $A^{k} : X D^{k} X^{-1} \qquad \text{if } X \text{ is definition}$ $A^{k} : X D^{k} X^{-1} \qquad \text{if } X \text{ is definition}$ $A^{k} : X D^{k} X^{-1} \qquad \text{if } X \text{ is definition}$ $A^{k} : X D^{k} X^{-1} \qquad \text{if } X \text{ is definition}$ $A^{k} : X D^{k} X^{-1} \qquad \text{if } X \text{ is definition}$ $A^{k} : X D^{k} X^{-1} \qquad \text{if } X \text{ is definition}$ $A^{k} : X D^{k} X^{-1} \qquad \text{if } X \text{ is definition}$ $A^{k} : X D^{k} X^{-1} \qquad \text{if } X \text{ is definition}$

$$e^{A} \cdot J + A \cdot A^{2} = X \cdot e^{0} X^{-1}$$

 \sqrt{A}

Applications of Eigenvalue Problems: Differential Equations

• Consider solutions to an ordinary differential equation of the form $\frac{dx}{dt}(t) = Ax(t) + f(t)$ with $x(0) = x_0$:

$$\boldsymbol{x}(t) = e^{t\boldsymbol{A}}\boldsymbol{x}_0 + \int_0^t e^{(t-\tau)\boldsymbol{A}}\boldsymbol{f}(\tau)d\tau$$

Using $A = XDX^{-1}$ permits us to compute the solution explicitly (Jordan form also suffices if A is defective): $\chi(+) = \int_{a} e^{+D} \int_{a} \int$

Differential Equations using the Generalized Eigenvalue Problem

Consider a more general linear differential equation of the form $B\frac{dx}{dt}(t) = Ax(t) + f(t) \text{ with } x(0) = x_0, \text{ which we can solve by premultiplying with } B^{-1},$

If we can find X such that A = XD_AX⁻¹ and B = XD_BX⁻¹ we could solve this equation while preserving symmetry of A and B:

Generalized Eigenvalue Problem

• A generalized eigenvalue problem has the form $Ax = \lambda Bx$,

Az = JBz (A-JB) x = 0

When A and B are symmetric, if one is SPD, we can perform Cholesky on B, multiply A by the inverted factors, and diagonalize it:

$$B = LL^{T}$$

$$L'AL^{T} = XDX^{T}$$

Canonical Forms Generalized Eigenvalue Problem

For nonsingular $U, V, A - \lambda B = U(J - \lambda I)V^T$ where J is in Jordan form:

For some unitary $P, Q, A = PT_AQ^H$ and $B = PT_BQ^H$ where T_A and T_B are triangular:

Nonlinear Eigenvalue Problem

In a polynomial eigenvalue problem, we seek solutions λ, x to

$$\sum_{i=0}^d \lambda^i oldsymbol{A}_i oldsymbol{x} = oldsymbol{0}$$

Assuming for simplicity that A_d = I, solutions are given by solving the matrix eigenvalue problem with the block-companion matrix

$$egin{bmatrix} -oldsymbol{A}_{d-1} & \cdots & -oldsymbol{A}_0 \ oldsymbol{I} & oldsymbol{0} & \cdots \ oldsymbol{I} & oldsymbol{0} & \cdots \ & \ddots & \ddots \ \end{pmatrix}$$