CS 450: Numerical Anlaysis

Lecture 12
 Chapter 4 - Eigenvalue Problems
 Krylov Subspace Methods and Applications of Eigenvalue Problems

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

February 23, 2018

Introduction to Krylov Subspace Methods

- Define k-dimensional Krylov subspace matrix

$$
\underline{K_{(C)}}=\left[\begin{array}{llll}
x_{0} & A x_{0} & \cdots & A^{k-1} x_{0}
\end{array}\right]
$$

how much information can we retain
with $^{5-1}$ midn'x-vector produce fo

$$
\begin{aligned}
& \text { - Show that } K_{\infty}^{-1} A K_{\mathbb{C}} \text { is a companion matrix } C \text { : } \\
& A k_{n}=\left[A x_{0}, A^{2} x_{0}, A^{3} x_{0} \ldots A^{k} \quad k_{n}^{-1} k_{n}=I\right. \\
& K_{n}\left[x_{0} A r_{6} A^{2} x_{0} \ldots\right] \\
& K_{n}^{-1} A K_{n}=\left[\begin{array}{ll}
0 & A^{1} x_{0}
\end{array}\right]=[\backslash 1] E_{\text {mad }}^{I} \quad x^{2} x \\
& A^{k} x_{0} \\
& k_{n}^{-1} k_{n}=I
\end{aligned}
$$

Krylov Subspaces

- Given (Q) $R=\boldsymbol{K}_{k}$, we obtain an orthonormal basis for the Krylov subspace, $\mathcal{K}\left(\boldsymbol{A}, \boldsymbol{x}_{0}\right)=\operatorname{span}(\boldsymbol{Q}):$
$\operatorname{span}(Q)=\operatorname{span}\left(k_{v}\right)=k$ sylov subspace $\{$ poly $(A) x$, ; where poly (A) is degree $[r-1\}$
consider whether $k-1$ steps of power iteration starting from x_{0} lead to an
approximation in the Krylov subspace, also consider QR (subspace) iteration

Krylov Subspace Methods

- Given $\boldsymbol{Q R}=\boldsymbol{K}_{k}$, we obtain an orthonormal basis for the Krylov subspace and $\boldsymbol{H}_{k}=\boldsymbol{Q}^{T} \boldsymbol{A} \boldsymbol{Q}$ which minimizes $\|\boldsymbol{A} \boldsymbol{Q}-\boldsymbol{Q} \boldsymbol{H}\|_{2}$:

$$
\begin{array}{ll}
\underbrace{A Q H^{-1} \cong Q} & A=u \varepsilon V^{\top} \\
\square & \square
\end{array} \begin{aligned}
& H^{-1}=Q^{\top} v \varepsilon^{\top} u^{\top} Q \\
& H=Q^{\top} u \varepsilon v^{\top} Q=Q^{\top} A Q
\end{aligned}
$$

- \boldsymbol{H}_{k} is Hessenberg, because the companion matrix \boldsymbol{C} is Hessenberg:

Rayleigh-Ritz Procedure

- The eigenvalues/eigenvectors of \boldsymbol{H}_{k} are the Ritz values/vectors:

> - The Ritz vectors and values are the ideal approximations of the actual coney eigenvalues and eigenvectors based on only \boldsymbol{H}_{k} and \boldsymbol{Q} :

Arnoldi Iteration

- Arnold iteration computes \boldsymbol{H} directly using the recurrence $\boldsymbol{q}_{i}^{T} \boldsymbol{A q}_{j}=h_{i j}$:

$$
\begin{aligned}
& q_{i} A_{q_{j}}=h_{i j}
\end{aligned}
$$

$$
\begin{aligned}
& \text { with coknr ot a } \\
& A=a_{h}^{\top} H Q \\
& =h \text { is }
\end{aligned}
$$

- After each matrix-vector product, orthogonalization is done with respect to each previous vector:

$$
\begin{aligned}
& \begin{array}{l}
\text { each previous vector: } \\
u_{i}=A q_{i} \quad\left(q_{0}=\text { mondomelized }\right)
\end{array} \\
& \left.v_{i}=u_{i} \text { orth gomlod with } C q_{1} \cdots q_{1}\right] \\
& q_{i+1}=v_{i} /\left\|v_{i}\right\| l \\
& \rho(A) q_{0}=0 \text { and } \rho(A) \\
& i s \text { degree } t-1
\end{aligned}
$$

Lanczos Iteration

- Lanczos iteration provides a method to reduce a symmetric matrix to tridiagonal matrix:

$$
Q^{\top} A Q=T=M
$$

- After each matrix-vector product, it suffices to orthogonalize with respect to two previous vectors:
$a_{:}=A_{a_{i}}$ there athugombur $a_{:}$to $q_{i} a d a_{i-1}$ and obtain for free wow sonly to $9, \cdots 9:-2$

Cost Krylov Subspace Methods

- Consider a matrix with m nonzeros, what is the cost of a matrix-vector product?

$$
O(m)
$$

$O(m+n)$ dense $O\left(n^{2}\right)$ typically $m \gg n$

Ks wort s O (km) to compute $0(\mathrm{mn})$ for k_{n}

- How much does it cost to orthogonalize the vector at the k th iteration?

Arnold: th iteration requires OTto) overall $O\left(L^{2} n\right)$
matrix -vector products east $O(m b)$ when not $\geqslant m$

Restarting Krylov Subspace Methods

- In finite precision, Lanczos generally loses orthogonality, while orthogonalization in Arnoldi can become prohibitively expensive:
for ex. in Arnoldal to complete dommant eigenvector can restart with He Riliz-vector estimate as starts gean
- Consequently, in practice low-dimensional Krylov subspace methods are constructed repeatedly using carefully selected new starting vectors:
for example, in Lexczos, selective or thu gomils.ton pacts 'hest' prearens vector y to sothugonclive to

Convergence of Lanczos Iteration

- Cauchy interlacing theorem: eigenvalues of $\boldsymbol{H}_{(\rightarrow)} \tilde{\lambda}_{1} \geq \cdots \geq \tilde{\lambda}_{n}$ with respect to eigenvalues of $\boldsymbol{A}, \lambda_{1} \geq \cdots \geq \lambda_{n}$ satisfy

Speetonn $\dot{\lambda}_{1}>\lambda_{2}$.

- Convergence to extrema eigenvalues is generally fastest:
smiles 1
and greatest

Applications of Eigenvalue Problems: Matrix Functions

- Given $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}$ how can we compute \boldsymbol{A}^{k} ?

$$
\begin{aligned}
& A^{2}=X D X^{-1} \times D X^{-1}=\frac{X D^{2} X^{-1}}{\text { if } x \text { is defisine }} \\
& A^{k}=X D D^{k} X^{-1} \quad
\end{aligned}
$$

- What about e^{A} ? $\log (A)$? generally $f(A)$? $f(A)=x f(J) x^{-1}$

$$
\begin{aligned}
& e^{A}=I+A=\frac{A^{2}}{n!} \cdots=X e^{D} X^{-1} \\
& \sqrt{A}
\end{aligned}
$$

Applications of Eigenvalue Problems: Differential Equations

- Consider solutions to an ordinary differential equation of the form $\frac{d \boldsymbol{x}}{d \boldsymbol{t}}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{f}(t)$ with $\boldsymbol{x}(0)=\boldsymbol{x}_{\mathbf{0}}:$

$$
\boldsymbol{x}(t)=e^{t \boldsymbol{A}} \boldsymbol{x}_{0}+\int_{0}^{t} e^{(t-\tau) \boldsymbol{A}} \boldsymbol{f}(\tau) d \tau
$$

SOS ${ }^{-1}$

- Using $\boldsymbol{A}={ }^{1}$ permits us to compute the solution explicitly (Jordan form also suffices if \boldsymbol{A} is defective):

$$
x(t)=S \underbrace{e^{t D}} S^{-1} x_{0}+\int_{0}^{t} S \underbrace{e^{(t-T) D}} \int^{-1} f(\tau) /
$$

Differential Equations using the Generalized Eigenvalue Problem

- Consider a more general linear differential equation of the form $\boldsymbol{B} \frac{d \boldsymbol{x}}{\boldsymbol{d} t}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{f}(t)$ with $\boldsymbol{x}(0)=\boldsymbol{x}_{\mathbf{0}}$, which we can solve by premultiplying with B^{-1},
- If we can find \boldsymbol{X} such that $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{D}_{\boldsymbol{A}} \boldsymbol{X}^{-1}$ and $\boldsymbol{B}=\boldsymbol{X} \boldsymbol{D}_{\boldsymbol{B}} \boldsymbol{X}^{-1}$ we could solve this equation while preserving symmetry of \boldsymbol{A} and \boldsymbol{B} :

Generalized Eigenvalue Problem

- A generalized eigenvalue problem has the form $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{B} \boldsymbol{x}$,

$$
A_{x}=\lambda B_{x} \quad(A-\lambda B)_{x}=0
$$

- When \boldsymbol{A} and \boldsymbol{B} are symmetric, if one is SPD, we can perform Cholesky on \boldsymbol{B}, multiply \boldsymbol{A} by the inverted factors, and diagonalize it:

$$
\begin{gathered}
B=L L^{\top} \\
L^{-1} A L^{-T}=X D X^{-1}
\end{gathered}
$$

Canonical Forms Generalized Eigenvalue Problem

- For nonsingular $\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{A}-\lambda \boldsymbol{B}=\boldsymbol{U}(\boldsymbol{J}-\lambda \boldsymbol{I}) \boldsymbol{V}^{T}$ where \boldsymbol{J} is in Jordan form:
- For some unitary $\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{A}=\boldsymbol{P} \boldsymbol{T}_{\boldsymbol{A}} \boldsymbol{Q}^{H}$ and $\boldsymbol{B}=\boldsymbol{P} \boldsymbol{T}_{\boldsymbol{B}} \boldsymbol{Q}^{H}$ where $\boldsymbol{T}_{\boldsymbol{A}}$ and $\boldsymbol{T}_{\boldsymbol{B}}$ are triangular:

Nonlinear Eigenvalue Problem

- In a polynomial eigenvalue problem, we seek solutions λ, \boldsymbol{x} to

$$
\sum_{i=0}^{d} \lambda^{i} \boldsymbol{A}_{i} \boldsymbol{x}=\mathbf{0}
$$

- Assuming for simplicity that $\boldsymbol{A}_{d}=\boldsymbol{I}$, solutions are given by solving the matrix eigenvalue problem with the block-companion matrix

$$
\left[\begin{array}{ccc}
-\boldsymbol{A}_{d-1} & \cdots & -\boldsymbol{A}_{0} \\
\boldsymbol{I} & \mathbf{0} & \cdots \\
& \ddots & \ddots
\end{array}\right]
$$

