
CS 450: Numerical Anlaysis1

Fast Fourier Transform

University of Illinois at Urbana-Champaign

1These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).

http://heath.cs.illinois.edu/scicomp/notes/index.html

Sparse Linear Systems and Time-independent PDEs

I The Poisson equation serves as a model problem for numerical methods:

I the 2D Poisson problem and resulting Kronecker product linear system are a
common benchmark,

I this system has the form T ⊗ I + I ⊗ T where T is tridiagonal.

I Dense, sparse direct, iterative, FFT, and Multigrid methods provide
increasingly good complexity for the problem:

I dense linear system solve costs O(n3) naively,
I nested dissection with Cholesky has O(n3/2) complexity and O(n log n) memory
I Conjugate-Gradient gives O(n3/2) complexity with O(n) memory
I FFT achieves O(n log n) cost and multigrid achieves O(n).

Multigrid
I Multigrid employs a hierarchy of grids to accelerate iterative methods:

I the residual equation Ax̂ = r on each fine grid, is approximately solved on the
next coarser grid,

I the equation is restricted by projection matrix P , so that PAP TP x̂ = Pr

I the interpolation operator (often given by P T) is used to obtain an approximate
x̂ based on the coarse grid approximate solution,

I at each level we perform some smoothing operations (e.g. Jacobi or Conjugate
Gradient) before restriction and after interpolation,

I at the coarsest level we typically solve directly.

I The multigrid method works by resolving high-frequency error components
on finer-grids and low-frequency error components on coarser grids:

I smoothers are usually e�ective at reducing local error, but slow at resolving
global (low-frequency) components of the error,

I on coarser grids, the low frequency error may be resolved more quickly.

Multigrid
I Consider the Galerkin approximation with linear finite elements to the

Poisson equation u′′ = f(t) with boundary conditions u(a) = u(b) = 0:

φ
(h)
i (t) =

(t− ti−1)/h : t ∈ [ti−1, ti]

(ti+1 − t)/h : t ∈ [ti, ti+1]

0 : otherwise

where t0 = t1 = a and tn+1 = tn = b. The weak form with grid spacing of h is∫ b

a
f(t)φ

(h)
i (t)dt = −

n∑
j=1

xj

∫ b

a
φ
(h)
j

′
(t)φ

(h)
i

′
(t)dt.

in multigrid, we define a coarse grid basis of (n− 1)/2 functions, which are
hat functions of twice the width,

φ
(2h)
i (t) =

1

2
φ
(h)
2i−2(t) + φ

(h)
2i−1(t) +

1

2
φ
(h)
2i (t) =

(t− ti−2)/2h : t ∈ [ti−2, ti]

(ti+2 − t)/2h : t ∈ [ti, ti+2]

0 : otherwise

Coarse Grid Matrix
I Multigrid restricts the residual equation on the fine grid A(h)x = r(h) to the

coarse grid: Let φ(2h) =
[
φ
(2h)
1 · · · φ

(2h)
(n−1)/2

]
and φ(h) =

[
φ
(h)
1 · · · φ

(h)
n

]
and define restriction matrix P so that φ(2h) = Pφ(h), i.e.,

P =
1

2

1 2 1
1 2 1

.

 =

p
(1)

p(2)

...

 .
The coarse grid sti�ness matrix is given by

a
(2h)
ij = −

∫ b

a
φ
(2h)
j

′
(t)φ

(2h)
i

′
(t)dt

= −p(i)
(∫ b

a
φ(h)′(t)φ(h)′T (t)dt

)
︸ ︷︷ ︸

−A(h)

p(j)
T
,

A(2h) = PA(h)P T .

Restricting the Residual Equation
I Given the fine-grid residual r(h), we seek to use the coarse grid to

approximate x(h) so that Ax(h) ≈ r(h)

I Given a function in the coarse grid basis, u(2h) = x(2h)Tφ(2h), we can express it
in the fine-grid basis via

u(2h) = x(2h)T Pφ(h)︸ ︷︷ ︸
φ(2h)

= x(2h)TP︸ ︷︷ ︸
x(h)T

φ(h).

I Consequently, the solution to the restricted residual equation A(2h)x(2h) = r(2h)

will lead to an approximate residual equation solution on the fine grid with
x(h) = P Tx(2h).

I Noting this, we derive the form of the coarse grid residual,

r(2h) = A(2h)x(2h)

= PA(h)P Tx(2h) = PA(h)x(h)

= Pr(h).

Discrete Fourier Transform
I The solutions to hyperbolic PDEs like Poisson are wave-like and take on

simple representations in the frequency basis, both for continuous and
discretized equations. We define the discrete Fourier transform using

ω(n) = cos(2π/n)− i sin(2π/n) = e−2πi/n.

The DFT matrix F ∈ Rn×n is given by fij = ωij(n),

F =

1 1 1 1
1 ω1

(4) ω2
(4) ω3

(4)

1 ω2
(4) ω4

(4) ω6
(4)

1 ω3
(4) ω6

(4) ω9
(4)

I it is complex and symmetric (not Hermitian),
I it is unitary modulo scaling F ∗ = nF−1.

The discrete Fourier transform of vector v is Fv.

Fast Fourier Transform (FFT)
I Consider b = Fa, we have

∀j ∈ [0, n− 1] bj =

n−1∑
k=0

ωjk(n)ak,

the FFT computes this recursively via 2 FFTs of dimension n/2, using
ω(n/2) = ω2

(n),

bj =

n/2−1∑
k=0

ω
j(2k)
(n) a2k +

n/2−1∑
k=0

ω
j(2k+1)
(n) a2k+1

=

n/2−1∑
k=0

ωjk(n/2)a2k + ωj(n)

n/2−1∑
k=0

ωjk(n/2)a2k+1

Fast Fourier Transform Derivation
I The FFT leverages similarity between the first and second half of the output,

bj =

n/2−1∑
k=0

ωjk(n/2)a2k︸ ︷︷ ︸
uj

+ωj(n)

n/2−1∑
k=0

ωjk(n/2)a2k+1︸ ︷︷ ︸
vj

corresponds closely to the entry shifted by n/2,

bj+n/2 =

n/2−1∑
k=0

ω
(j+n/2)k
(n/2) a2k + ω

j+n/2
(n)

n/2−1∑
k=0

ω
(j+n/2)k
(n/2) a2k+1

Now ω
(j+n/2)k
(n/2) = ωjk(n/2) since (ω

n/2
(n/2))

k = 1k = 1 and using ωn/2(n) = −1,

bj+n/2 =

n/2−1∑
k=0

ωjk(n/2)a2k︸ ︷︷ ︸
uj

−ωj(n)
n/2−1∑
k=0

ωjk(n/2)a2k+1︸ ︷︷ ︸
vj

FFT Algorithm Summary
I Let vectors u and v be two recursive FFTs, ∀j ∈ [0, n/2− 1]

uj =

n/2−1∑
k=0

ωjk(n/2)a2k, vj =

n/2−1∑
k=0

ωjk(n/2)a2k+1

I Given u and v scale using ”twiddle factors” zj = ωj
(n) · vj

I Then it su�ces to combine the vectors as follows b =
[
u+ z
u− z

]
I The FFT has O(n log n) cost complexity:

There are two recursive calls of dimension n/2 and O(n) work for application
to twiddle factors and final summation, thus

T (n) = 2T (n) +O(n) = O(n log n).

Applications of the FFT
I We can rapidly multiply degree n polynomials by considering their values
ωi(2n−1) for i ∈ {0, . . . , 2n− 1}

pc(ω
i
(2n−1)) = pa(ω

i
(2n−1))pb(ω

i
(2n−1))

I The product of coe�cients of pa, pb with Vandermonde matrix vij = (ωi
(2n−1))

j ,
which is the DFT matrix, gives values of polynomials at 2n− 1 nodes.

I Interpolation to compute coe�cients of pc from the products of values of pa and
pb at those nodes is multiplication by the inverted DFT matrix and is exact since
pc is degree 2n− 2.

I More generally the DFT can be used to solve any Toeplitz linear system
(convolution):

I A standard convolution has the form, ∀k ∈ [0, n− 1] ck =
∑k

j=0 ajbk−j .

I Convolution is equivalent to multiplications of polynomials with degree n/2− 1
and coe�cients a and b, where the convolution computes the coe�cients c of
the product of the two polynomials.

Convolution via DFT

I The Fourier transform method for computing a convolution is given by

ck =
1

n

∑
s

ω−ks(n)

(∑
j

ωsj(n)aj

)(∑
t

ωst(n)bt

)

I Rearrange the order of the summations to see what happens to every product of
a and b

ck =
1

n

∑
s

∑
j

∑
t

ω
(j+t−k)s
(n) ajbt

I For any u = j + t− k 6= 0, we observe
∑

s(ω
u
(n))

s = 0

I When j + t− k = 0 the products ω(s+t−j)k
(n) = 1, so there are n nonzero terms

ajbk−j in the summation

Solving Numerical PDEs with the FFT

I 1D finite-di�erence schemes on a regular grid correspond to convolutions:
1D model problem is simply convolution with vector [1,−2, 1].

I For the 1D Poisson model problem, the eigenvectors of T corresponds to the
imaginary part of a minor of a 2(n+ 1)-dimensional DFT matrix:

I In particular, T =XDX−1 where xij is the imaginary part of fi+1,j+1 with
X ∈ Rn×n and F ∈ R2(n+1)×2(n+1).

I Consequently, T can be diagonalized and the overall system solved by FFT with
O(n log n) cost.

I Multidimensional Poisson can be handled with multidimensional FFT:
For example 2D FFT (1D FFT of each row then 1D FFT of each column) su�ces
to solve the 2D Poisson problem.

Demo: Fast Fourier Transform

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/12-fft/Fast Fourier Transform.html

	Model Problem
	Multigrid
	Fast Fourier Transform

