CS 450: Numerical Anlaysis¹ Fast Fourier Transform

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Sparse Linear Systems and Time-independent PDEs

- > The Poisson equation serves as a model problem for numerical methods:
 - the 2D Poisson problem and resulting Kronecker product linear system are a common benchmark,
 - this system has the form $T \otimes I + I \otimes T$ where T is tridiagonal.
- Dense, sparse direct, iterative, FFT, and Multigrid methods provide increasingly good complexity for the problem:
 - dense linear system solve costs $O(n^3)$ naively,
 - nested dissection with Cholesky has $O(n^{3/2})$ complexity and $O(n \log n)$ memory
 - Conjugate-Gradient gives $O(n^{3/2})$ complexity with O(n) memory
 - ▶ *FFT* achieves $O(n \log n)$ cost and multigrid achieves O(n).

Multigrid

- Multigrid employs a hierarchy of grids to accelerate iterative methods:
 - the residual equation $A\hat{x} = r$ on each fine grid, is approximately solved on the next coarser grid,
 - the equation is restricted by projection matrix P, so that $PAP^TP\hat{x} = Pr$
 - the interpolation operator (often given by P^T) is used to obtain an approximate \hat{x} based on the coarse grid approximate solution,
 - at each level we perform some smoothing operations (e.g. Jacobi or Conjugate Gradient) before restriction and after interpolation,
 - at the coarsest level we typically solve directly.
- The multigrid method works by resolving high-frequency error components on finer-grids and low-frequency error components on coarser grids:
 - smoothers are usually effective at reducing local error, but slow at resolving global (low-frequency) components of the error,
 - on coarser grids, the low frequency error may be resolved more quickly.

Multigrid

► Consider the Galerkin approximation with linear finite elements to the Poisson equation u'' = f(t) with boundary conditions u(a) = u(b) = 0:

$$\phi_i^{(h)}(t) = \begin{cases} (t - t_{i-1})/h & : t \in [t_{i-1}, t_i] \\ (t_{i+1} - t)/h & : t \in [t_i, t_{i+1}] \\ 0 & : \text{ otherwise} \end{cases}$$

where $t_0 = t_1 = a$ and $t_{n+1} = t_n = b$. The weak form with grid spacing of h is

$$\int_{a}^{b} f(t)\phi_{i}^{(h)}(t)dt = -\sum_{j=1}^{n} x_{j} \int_{a}^{b} \phi_{j}^{(h)'}(t)\phi_{i}^{(h)'}(t)dt$$

in multigrid, we define a coarse grid basis of (n-1)/2 functions, which are hat functions of twice the width,

$$\phi_{i}^{(2h)}(t) = \frac{1}{2}\phi_{2i-2}^{(h)}(t) + \phi_{2i-1}^{(h)}(t) + \frac{1}{2}\phi_{2i}^{(h)}(t) = \begin{cases} (t-t_{i-2})/2h & :t \in [t_{i-2}, t_{i}] \\ (t_{i+2}-t)/2h & :t \in [t_{i}, t_{i+2}] \\ 0 & : otherwise \end{cases}$$

Coarse Grid Matrix

▶ Multigrid restricts the residual equation on the fine grid $A^{(h)}x = r^{(h)}$ to the coarse grid: Let $\phi^{(2h)} = \begin{bmatrix} \phi_1^{(2h)} & \cdots & \phi_{(n-1)/2}^{(2h)} \end{bmatrix}$ and $\phi^{(h)} = \begin{bmatrix} \phi_1^{(h)} & \cdots & \phi_n^{(h)} \end{bmatrix}$ and define restriction matrix P so that $\phi^{(2h)} = P\phi^{(h)}$, i.e.,

$$\boldsymbol{P} = \frac{1}{2} \begin{bmatrix} 1 & 2 & 1 & & \\ & 1 & 2 & 1 & \\ & & \ddots & \ddots & \ddots \end{bmatrix} = \begin{bmatrix} \boldsymbol{p}^{(1)} \\ \boldsymbol{p}^{(2)} \\ \vdots \end{bmatrix}$$

The coarse grid stiffness matrix is given by

$$a_{ij}^{(2h)} = -\int_{a}^{b} \phi_{j}^{(2h)'}(t)\phi_{i}^{(2h)'}(t)dt$$

= $-p^{(i)} \underbrace{\left(\int_{a}^{b} \phi^{(h)'}(t)\phi^{(h)'T}(t)dt\right)}_{-A^{(h)}} p^{(j)T},$
 $A^{(2h)} = PA^{(h)}P^{T}.$

Restricting the Residual Equation

- Given the fine-grid residual $r^{(h)}$, we seek to use the coarse grid to approximate $x^{(h)}$ so that $Ax^{(h)} \approx r^{(h)}$
 - ► Given a function in the coarse grid basis, u^(2h) = x^{(2h)^T} φ^(2h), we can express it in the fine-grid basis via

$$u^{(2h)} = \boldsymbol{x}^{(2h)^T} \underbrace{\boldsymbol{P} \phi^{(h)}}_{\phi^{(2h)}} = \underbrace{\boldsymbol{x}^{(2h)^T}}_{\boldsymbol{x}^{(h)^T}} \boldsymbol{P} \phi^{(h)}$$

- ► Consequently, the solution to the restricted residual equation A^(2h)x^(2h) = r^(2h) will lead to an approximate residual equation solution on the fine grid with x^(h) = P^Tx^(2h).
- Noting this, we derive the form of the coarse grid residual,

$$egin{aligned} &m{r}^{(2h)} = m{A}^{(2h)} m{x}^{(2h)} \ &= m{P} m{A}^{(h)} m{P}^T m{x}^{(2h)} = m{P} m{A}^{(h)} m{x}^{(h)} \ &= m{P} m{r}^{(h)}. \end{aligned}$$

Discrete Fourier Transform

The solutions to hyperbolic PDEs like Poisson are wave-like and take on simple representations in the frequency basis, both for continuous and discretized equations. We define the *discrete Fourier transform* using

$$\omega_{(n)} = \cos(2\pi/n) - i\sin(2\pi/n) = e^{-2\pi i/n}$$

The DFT matrix $oldsymbol{F} \in \mathbb{R}^{n imes n}$ is given by $f_{ij} = \omega_{(n)}^{ij}$,

$$oldsymbol{F} = egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & \omega_{(4)}^1 & \omega_{(4)}^2 & \omega_{(4)}^3 \ 1 & \omega_{(4)}^2 & \omega_{(4)}^4 & \omega_{(4)}^6 \ 1 & \omega_{(4)}^3 & \omega_{(4)}^6 & \omega_{(4)}^9 \end{bmatrix}$$

- it is complex and symmetric (not Hermitian),
- it is unitary modulo scaling $F^* = nF^{-1}$.

The discrete Fourier transform of vector v is Fv.

Fast Fourier Transform (FFT)

• Consider b = Fa, we have

$$\forall j \in [0, n-1] \quad b_j = \sum_{k=0}^{n-1} \omega_{(n)}^{jk} a_k,$$

the FFT computes this recursively via 2 FFTs of dimension n/2 , using $\omega_{(n/2)}=\omega_{(n)}^2,$

$$b_{j} = \sum_{k=0}^{n/2-1} \omega_{(n)}^{j(2k)} a_{2k} + \sum_{k=0}^{n/2-1} \omega_{(n)}^{j(2k+1)} a_{2k+1}$$
$$= \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k} + \omega_{(n)}^{j} \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k+1}$$

Fast Fourier Transform Derivation

The FFT leverages similarity between the first and second half of the output,

$$b_{j} = \underbrace{\sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k}}_{u_{j}} + \omega_{(n)}^{j} \underbrace{\sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k+1}}_{v_{j}}$$

corresponds closely to the entry shifted by n/2,

$$b_{j+n/2} = \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{(j+n/2)k} a_{2k} + \omega_{(n)}^{j+n/2} \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{(j+n/2)k} a_{2k+1}$$
Now $\omega_{(n/2)}^{(j+n/2)k} = \omega_{(n/2)}^{jk}$ since $(\omega_{(n/2)}^{n/2})^k = 1^k = 1$ and using $\omega_{(n)}^{n/2} = -1$,
 $b_{j+n/2} = \underbrace{\sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k}}_{u_j} - \omega_{(n)}^j \underbrace{\sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k+1}}_{v_j}$

FFT Algorithm Summary

- Let vectors $oldsymbol{u}$ and $oldsymbol{v}$ be two recursive FFTs, $\forall j \in [0, n/2 - 1]$

$$u_j = \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k}, \quad v_j = \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k+1}$$

▶ Given $m{u}$ and $m{v}$ scale using "twiddle factors" $z_j = \omega_{(n)}^j \cdot v_j$

• Then it suffices to combine the vectors as follows $m{b} = egin{bmatrix} m{u} + m{z} \\ m{u} - m{z} \end{bmatrix}$

• The FFT has $O(n \log n)$ cost complexity:

There are two recursive calls of dimension n/2 and O(n) work for application to twiddle factors and final summation, thus

$$T(n) = 2T(n) + O(n) = O(n \log n).$$

Applications of the FFT

▶ We can rapidly multiply degree n polynomials by considering their values $\omega^i_{(2n-1)}$ for $i \in \{0, ..., 2n-1\}$

$$p_c(\omega_{(2n-1)}^i) = p_a(\omega_{(2n-1)}^i)p_b(\omega_{(2n-1)}^i)$$

- ► The product of coefficients of p_a, p_b with Vandermonde matrix $v_{ij} = (\omega_{(2n-1)}^i)^j$, which is the DFT matrix, gives values of polynomials at 2n 1 nodes.
- ▶ Interpolation to compute coefficients of p_c from the products of values of p_a and p_b at those nodes is multiplication by the inverted DFT matrix and is exact since p_c is degree 2n 2.
- More generally the DFT can be used to solve any Toeplitz linear system (convolution):
 - A standard convolution has the form, $\forall k \in [0, n-1]$ $c_k = \sum_{j=0}^k a_j b_{k-j}$.
 - Convolution is equivalent to multiplications of polynomials with degree n/2 1 and coefficients a and b, where the convolution computes the coefficients c of the product of the two polynomials.

Convolution via DFT

The Fourier transform method for computing a convolution is given by

$$c_k = \frac{1}{n} \sum_{s} \omega_{(n)}^{-ks} \Big(\sum_{j} \omega_{(n)}^{sj} a_j \Big) \Big(\sum_{t} \omega_{(n)}^{st} b_t \Big)$$

Rearrange the order of the summations to see what happens to every product of a and b

$$c_k = \frac{1}{n} \sum_s \sum_j \sum_t \omega_{(n)}^{(j+t-k)s} a_j b_t$$

- For any $u = j + t k \neq 0$, we observe $\sum_{s} (\omega_{(n)}^{u})^{s} = 0$
- When j + t k = 0 the products $\omega_{(n)}^{(s+t-j)k} = 1$, so there are n nonzero terms $a_j b_{k-j}$ in the summation

Solving Numerical PDEs with the FFT

- ► 1D finite-difference schemes on a regular grid correspond to convolutions:
 1D model problem is simply convolution with vector [1, -2, 1].
- ► For the 1D Poisson model problem, the eigenvectors of *T* corresponds to the imaginary part of a minor of a 2(n + 1)-dimensional DFT matrix:
 - In particular, $T = XDX^{-1}$ where x_{ij} is the imaginary part of $f_{i+1,j+1}$ with $X \in \mathbb{R}^{n \times n}$ and $F \in \mathbb{R}^{2(n+1) \times 2(n+1)}$.
 - Consequently, T can be diagonalized and the overall system solved by FFT with $O(n \log n)$ cost.
- Multidimensional Poisson can be handled with multidimensional FFT: For example 2D FFT (1D FFT of each row then 1D FFT of each column) suffices to solve the 2D Poisson problem.