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Sparse Linear Systems and Time-independent PDEs

I The Poisson equation serves as a model problem for numerical methods:

I the 2D Poisson problem and resulting Kronecker product linear system are a
common benchmark,

I this system has the form T ⊗ I + I ⊗ T where T is tridiagonal.

I Dense, sparse direct, iterative, FFT, and Multigrid methods provide
increasingly good complexity for the problem:

I dense linear system solve costs O(n3) naively,
I nested dissection with Cholesky has O(n3/2) complexity and O(n log n) memory
I Conjugate-Gradient gives O(n3/2) complexity with O(n) memory
I FFT achieves O(n log n) cost and multigrid achieves O(n).



Multigrid
I Multigrid employs a hierarchy of grids to accelerate iterative methods:

I the residual equation Ax̂ = r on each fine grid, is approximately solved on the
next coarser grid,

I the equation is restricted by projection matrix P , so that PAP TP x̂ = Pr

I the interpolation operator (often given by P T ) is used to obtain an approximate
x̂ based on the coarse grid approximate solution,

I at each level we perform some smoothing operations (e.g. Jacobi or Conjugate
Gradient) before restriction and after interpolation,

I at the coarsest level we typically solve directly.

I The multigrid method works by resolving high-frequency error components
on finer-grids and low-frequency error components on coarser grids:

I smoothers are usually e�ective at reducing local error, but slow at resolving
global (low-frequency) components of the error,

I on coarser grids, the low frequency error may be resolved more quickly.



Multigrid
I Consider the Galerkin approximation with linear finite elements to the

Poisson equation u′′ = f(t) with boundary conditions u(a) = u(b) = 0:
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(t− ti−1)/h : t ∈ [ti−1, ti]
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in multigrid, we define a coarse grid basis of (n− 1)/2 functions, which are
hat functions of twice the width,
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Coarse Grid Matrix
I Multigrid restricts the residual equation on the fine grid A(h)x = r(h) to the

coarse grid: Let φ(2h) =
[
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]
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]
and define restriction matrix P so that φ(2h) = Pφ(h), i.e.,
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The coarse grid sti�ness matrix is given by

a
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ij = −

∫ b
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A(2h) = PA(h)P T .



Restricting the Residual Equation
I Given the fine-grid residual r(h), we seek to use the coarse grid to

approximate x(h) so that Ax(h) ≈ r(h)

I Given a function in the coarse grid basis, u(2h) = x(2h)Tφ(2h), we can express it
in the fine-grid basis via

u(2h) = x(2h)T Pφ(h)︸ ︷︷ ︸
φ(2h)

= x(2h)TP︸ ︷︷ ︸
x(h)T

φ(h).

I Consequently, the solution to the restricted residual equation A(2h)x(2h) = r(2h)

will lead to an approximate residual equation solution on the fine grid with
x(h) = P Tx(2h).

I Noting this, we derive the form of the coarse grid residual,

r(2h) = A(2h)x(2h)

= PA(h)P Tx(2h) = PA(h)x(h)

= Pr(h).



Discrete Fourier Transform
I The solutions to hyperbolic PDEs like Poisson are wave-like and take on

simple representations in the frequency basis, both for continuous and
discretized equations. We define the discrete Fourier transform using

ω(n) = cos(2π/n)− i sin(2π/n) = e−2πi/n.

The DFT matrix F ∈ Rn×n is given by fij = ωij(n),

F =


1 1 1 1
1 ω1

(4) ω2
(4) ω3

(4)

1 ω2
(4) ω4

(4) ω6
(4)

1 ω3
(4) ω6

(4) ω9
(4)


I it is complex and symmetric (not Hermitian),
I it is unitary modulo scaling F ∗ = nF−1.

The discrete Fourier transform of vector v is Fv.



Fast Fourier Transform (FFT)
I Consider b = Fa, we have

∀j ∈ [0, n− 1] bj =

n−1∑
k=0

ωjk(n)ak,

the FFT computes this recursively via 2 FFTs of dimension n/2, using
ω(n/2) = ω2

(n),
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Fast Fourier Transform Derivation
I The FFT leverages similarity between the first and second half of the output,

bj =
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uj
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corresponds closely to the entry shifted by n/2,
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k = 1k = 1 and using ωn/2(n) = −1,
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FFT Algorithm Summary
I Let vectors u and v be two recursive FFTs, ∀j ∈ [0, n/2− 1]

uj =

n/2−1∑
k=0

ωjk(n/2)a2k, vj =

n/2−1∑
k=0

ωjk(n/2)a2k+1

I Given u and v scale using ”twiddle factors” zj = ωj
(n) · vj

I Then it su�ces to combine the vectors as follows b =
[
u+ z
u− z

]
I The FFT has O(n log n) cost complexity:

There are two recursive calls of dimension n/2 and O(n) work for application
to twiddle factors and final summation, thus

T (n) = 2T (n) +O(n) = O(n log n).



Applications of the FFT
I We can rapidly multiply degree n polynomials by considering their values
ωi(2n−1) for i ∈ {0, . . . , 2n− 1}

pc(ω
i
(2n−1)) = pa(ω

i
(2n−1))pb(ω

i
(2n−1))

I The product of coe�cients of pa, pb with Vandermonde matrix vij = (ωi
(2n−1))

j ,
which is the DFT matrix, gives values of polynomials at 2n− 1 nodes.

I Interpolation to compute coe�cients of pc from the products of values of pa and
pb at those nodes is multiplication by the inverted DFT matrix and is exact since
pc is degree 2n− 2.

I More generally the DFT can be used to solve any Toeplitz linear system
(convolution):

I A standard convolution has the form, ∀k ∈ [0, n− 1] ck =
∑k

j=0 ajbk−j .

I Convolution is equivalent to multiplications of polynomials with degree n/2− 1
and coe�cients a and b, where the convolution computes the coe�cients c of
the product of the two polynomials.



Convolution via DFT

I The Fourier transform method for computing a convolution is given by

ck =
1

n

∑
s

ω−ks(n)

(∑
j

ωsj(n)aj

)(∑
t

ωst(n)bt

)

I Rearrange the order of the summations to see what happens to every product of
a and b

ck =
1

n

∑
s

∑
j

∑
t

ω
(j+t−k)s
(n) ajbt

I For any u = j + t− k 6= 0, we observe
∑

s(ω
u
(n))

s = 0

I When j + t− k = 0 the products ω(s+t−j)k
(n) = 1, so there are n nonzero terms

ajbk−j in the summation



Solving Numerical PDEs with the FFT

I 1D finite-di�erence schemes on a regular grid correspond to convolutions:
1D model problem is simply convolution with vector [1,−2, 1].

I For the 1D Poisson model problem, the eigenvectors of T corresponds to the
imaginary part of a minor of a 2(n+ 1)-dimensional DFT matrix:

I In particular, T =XDX−1 where xij is the imaginary part of fi+1,j+1 with
X ∈ Rn×n and F ∈ R2(n+1)×2(n+1).

I Consequently, T can be diagonalized and the overall system solved by FFT with
O(n log n) cost.

I Multidimensional Poisson can be handled with multidimensional FFT:
For example 2D FFT (1D FFT of each row then 1D FFT of each column) su�ces
to solve the 2D Poisson problem.

Demo: Fast Fourier Transform

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/12-fft/Fast Fourier Transform.html
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