CS 450: Numerical Anlaysis
Lecture 23

Chapter 8 Initial Value Problems for Ordinary Differential Equations
Introduction to Numerical Solutions to ODEs

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

April 11,2018



Ordinary Differential Equations o U "

» An ordinary differential equation (ODE) usually describes time-varying
system by a function y(¢) that satisfies a set of equations in its derivatives
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» An ODE of any order k can be transformed into a first-order ODE
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Example: Newton’s Second Law

» F = ma corresponds to a second order ODE
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» We can transform it into a first order ODE in two variables
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Initial Value Problems

» Generally, a first order ODE specifies only the derivative, so the solutions are
non-unique, an initial condition addresses this:
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» Given an initial condition, an ODE must satisfy an integral equation for any
given point ¢: }



Existence and Uniqueness of Solutions

» For an ODE to have a unique solution, it must be defined on a closed domain
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» The solutions of an ODE can be stable unstable, or asymptotlcally stable:
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Stability of 1D ODEs
» The solution to the scalar ODE ¢ = \y is y(t) = yoe*!, with stability
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» A linear ODE generally has the form y’ = Ay with stability dependent on the
spectral radius (largest elgenvalue) of A LONL o "¢~

Dy - e
(61 (/} IL_W«X/\M(MA o£ A

AL é ru( ( A‘""\ L
\) ?/»a,fiﬂn 5111}”2/ o



Numerical Solutions to ODEs

» Basic methods for numerical ODEs seek to obtain the solution y at a set of
points:
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» Euler’s method provides the simplest method (attempt) for obtaining a

e e il
(6 (ér\(\ = (/b ("(L/\ t L ‘({vtt,_, ) %(’Lw%




Error in Numerical Methods for ODEs

» Truncation error is typically the main quantity of interest, which can be
defined globally or locally {0 Ca’ o
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» The order of accuracy of Euler’s method is one less than than the order of %Y

the leading order term in [,
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Stability of Numerical Methods for ODEs

» Stability can be defined for numerical methods similarly to ODEs themselves
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» To analyze stability, can consider application to linear scalar ODE, e.g. for
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Implicit Methods

» Implicit methods for ODEs form a sequence of solutions that satisfy
conditions on a local approximation to the solution:
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» The backward Euler method for a simple linear scalar ODE stability region is

the left half of the complex plane: v \
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