CS 450: Numerical Anlaysis

Lecture 27
Chapter 11 Partial Differential Equations
Numerical Methods for Partial Differential Equations

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

April 25, 2018

Partial Differential Equations

► Partial differential equations (PDEs) are equations describe physical laws and other continuous phenomena:

► A simple PDE is the advection equation, which describes basic phenomena in fluid flow:

Country
$$u_t = -a(t,x)u_x + 20$$

$$u_1 = -cu_x$$

$$can have further BC$$

Properties of PDEs

A characteristic of a PDE is a level curve in the solution: $x(+) = characters he are yorlds opt = x(0) = x_0$ $x(+) = characters he are yorlds opt = x(0) = x_0$ x'(+) = c(+, x(+)) x'(+) = c(+, x(+))

► The <u>order of</u> a PDE is the highest-order of any partial derivative appearing in the PDE:

advertion eighter is first order.

second order implies that we have e.g., $u_{xx} = \frac{\partial u}{\partial x \partial x}$ with any

Types of PDEs Some of the most important PDEs are second order: Hent eghatron (different) 4=422 Ware eghe him (oscillation) his = c Loplace equetion (strety state) axx ▶ The discriminant determines the canonical form of second-order PDEs: aux + huxy + chy + lux + chy

Method of Lines

 Semidiscrete methods obtain an approximation to the PDE by solving a system of ODEs, e.g. consider heat equation

System of ODEs, e.g. consider fleat equation
$$\underbrace{u_t}_{t} \neq cu_{xx} \text{ on } 0 \leq x \leq 1, \quad u(0,x) = f(x), u(t,0) = u(t,1) = 0$$

$$\times \underbrace{(u_t)_{t}}_{t} \neq cu_{xx} \text{ on } 0 \leq x \leq 1, \quad u(0,x) = f(x), u(t,0) = u(t,1) = 0$$

$$\times \underbrace{(u_t)_{t}}_{t} \neq \underbrace{(u_t)_{t}}_{t} = \underbrace{(u_t)_{t}}_{t} + \underbrace{(u_t)$$

$$u_{xx}(+,x_1) \approx (x_1x_2)$$

$$y_1(+) = u_1(+,x_1) \qquad y_1(+) = y_1(+) - 2y_1(+) - 2y_1(+) = y_1(+) - 2y_1(+) - 2y_1(+) = y_1(+) - 2y_1(+) - 2y_1(+) - 2y_1(+) = y_1(+) - 2y_1(+) - 2y_1(+)$$

envalues of A will range

► This *method of lines* often yields a stiff ODE:

Semidiscrete Collocation

▶ Instead of finite-differences, we can express u(t, x) in a spatial basis:

For the heat equation $u_t = cu_{xx}$, we obtain an ODE:

Fully Discrete Methods

► Generally, both time and space dimensions are discretized, for example using finite differences:

Implicit Fully Discrete Methods

► When using Euler's method for the heat equation, to stay in stability region, require

$$\Delta t = O\left((\Delta x)^2\right)$$

Convergence and Stability

► Lax Equivalence Theorem: consistency + stability = convergence

Stability can be ascertained by spectral or Fourier analysis:

CFL Condition

▶ The domain of dependence of a PDE for a given point (t, x) is the portion of the problem domain influencing this point through the PDE:

► The Courant, Friedrichs, and Lewy (CFL) condition states that a *necessary* condition for an explicit finite-differencing scheme to be stable for a hyperbolic PDE is that the domain of the dependence of the PDE be contained in the domain of dependence of the scheme:

Time-Independent PDEs

► We now turn our focus to time-independent PDEs as exemplified by the Helmholtz equation:

$$u_{xx} + u_{yy} + \lambda u = f(x, y)$$

▶ We discretize as before, but no longer perform time stepping:

Finite-Differencing for Poisson

ightharpoonup Consider the Poisson equation with equispaced mesh-points on [0,1]:

Multidimensional Finite Elements

► There are many ways to define localized basis functions, for example in the 2D FEM method¹:

