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Partial Differential Equations

» Partial differential equations (PDEs) are equations describe physical laws
and other continuous phenomena:
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» A simple PDE is the advection equation, which describes basic phenomena in
fluid flow:
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Properties of PDEs

» A characteristic of a PDE is a level curve in the solution:
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» The order of a PDE is the highest-order of any partial derivative appearing in
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Types of PDEs
» Some of the most important PDEs are second order:
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» The discriminant determines the canonical form of second-order PDEs:
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Method of Lines

» Semidiscrete methods obtain an approximation to the PDE by solving a
system of ODEs, e.g. consider heat equation
@ cuzzon0 <z <1, u(0,x)= f(;v),u(t,O) =u(t,1)=0
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Semidiscrete Collocation

» Instead of finite-differences, we can express u(t¢, ) in a spatial basis:

» For the heat equation u; = cu,,, we obtain an ODE:



Fully Discrete Methods

» Generally, both time and space dimensions are discretized, for example
using finite differences:



Implicit Fully Discrete Methods

» When using Euler’s method for the heat equation, to stay in stability region,
require
At = O((Am)2>



Convergence and Stability

» Lax Equivalence Theorem: consistency + stability = convergence

» Stability can be ascertained by spectral or Fourier analysis:



CFL Condition

» The domain of dependence of a PDE for a given point (¢, x) is the portion of
the problem domain influencing this point through the PDE:
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» The Courant, Friedrichs, and Lewy (CFL) condition stézfes tHAt a necessary
condition for an explicit finite-differencing scheme to be stable for a

hyperbolic PDE is that the domain of the dependence of the PDE be
contained in the domain of dependence of the scheme:
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Time-Independent PDEs

» We now turn our focus to time-independent PDEs as exemplified by the
Helmholtz equation:
Ugy + Uyy + Au = f(x’y)

» We discretize as before, but no longer perform time stepping:



Finite-Differencing for Poisson

» Consider the Poisson equation with equispaced mesh-points on [0, 1]:



Multidimensional Finite Elements

» There are many ways to define localized basis functions, for example in the
2D FEM method:
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