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Sparse Linear Systems
� Finite-di�erence and finite-element methods for time-independent PDEs give

rise to sparse linear systems:

� Direct methods apply LU or other factorization to A, while iterative methods
refine x by minimizing r = Ax− b, e.g. via Krylov subspace methods.





Direct Methods for Sparse Linear Systems
� It helps to think of A as the adjacency matrix of graph G = (V,E) where

V = {1, . . . n} and aij �= 0 if and only if (i, j) ∈ E:

� Factorizing the lth row/column in Gaussian elimination corresponds to
removing node i, with nonzeros (new edges) introduces for each k, l such
that (i, k) and (i, l) are in the graph.





Vertex Orderings for Sparse Direct Methods
� Select the node of minimum degree at each step of factorization:

� Graph partitioning also serves to bound fill, remove vertex separator S ⊂ V
so that V \ S = V1 ∪ · · · ∪ Vk become disconnected, then order V1, . . . , Vk, S:

� Nested dissection ordering partitions graph into halves recursively, ordering
each separator last.



Sparse Iterative Methods
� Direct sparse factorization is ine�ective in memory usage and/or cost for

many typical sparsity matrices, motivating iterative methods:



Sparse Iterative Methods
� The Jacobi method is the simplest iterative solver:

� The Jacobi method converges if A is strictly row-diagonally-dominant:



Gauss-Seidel Method
� The Jacobi method takes weighted sums of x(k) to produce each entry of

x(k+1), while Gauss-Seidel uses the latest available values, i.e. to compute
x
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i it uses a weighted sum of

x
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i , . . . , x(k)n .

� Gauss-Seidel provides somewhat better convergence than Jacobi:



Successive Over-Relaxation
� The successive over-relaxation (SOR) method seeks to improve the spectral

radius achieved by Gauss-Seidel, by choosing
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� The parameter ω in SOR controls the ‘step-size’ of the iterative method:



Conjugate Gradient
� The solution to Ax = b is a minima of the quadratic optimization problem,

min
x

||Ax− b||22

� Conjugate gradient works by picking A-orthogonal descent directions

� The convergence rate of CG is linear with coe�cient
√
κ−1√
κ+1

where
κ = cond(A):



Preconditioning
� Preconditioning techniques choose matrix M ≈ A and solve the linear

system
M−1Ax = M−1b

� M is a usually chosen to be an e�ective approximation to A with a simple
structure


