Today	Announcements:
	- HWZ due, HW3out
	- Exemple next week
	- MOSS /collab. police
	- MOSS /collab. policy - IEF

Fixing nonexistence of LU

What does LU with permutations process look like?

$$M_3 P_3 M_2 P_1 M_1 P_1 M_2 P_1 M_1 P_1 M_2$$

$$A = \left(M_3 P_3 M_2 P_1 M_1 P_1 \right)^{-1} M_2$$

Demo: LU with Partial Pivoting (Part I)

What about the *L* in LU?

Sort out what LU with pivoting looks like. Have: $M_3P_3M_2P_2M_1P_1A = U$.

Demo: LU with Partial Pivoting (Part II)

^SPA-Lh

Computational Cost

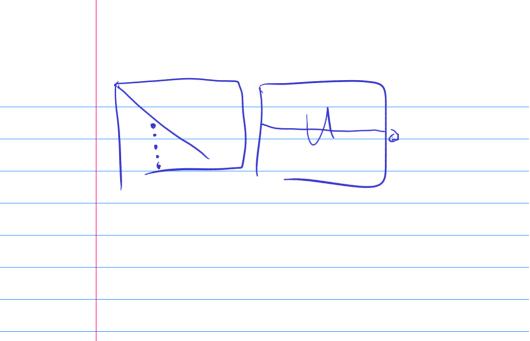
(AB) 15 En Ain But

What is the computational cost of multiplying two $n \times n$ matrices?

$$\frac{O(r_{\lambda})}{O(r_{\lambda})} \qquad \frac{W' \forall - > O(r_{\lambda})}{O(r_{\lambda})}$$

What is the computational cost of carrying out LU factorization on an $n \times n$ matrix?

Demo: Complexity of Mat-Mat multiplication and LU



More cost concerns

What's the cost of solving Ax = b?

What's the cost of solving $A\mathbf{x} = \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$?

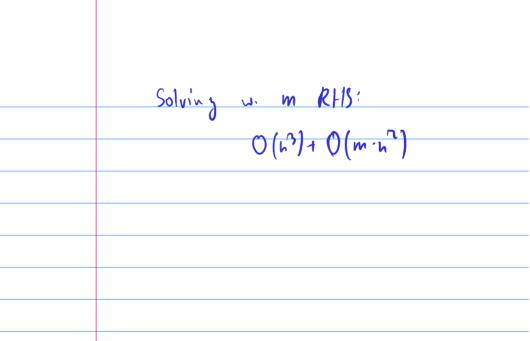
What's the cost of finding A^{-1} ?

f finding
$$A^{-1}$$
?

$$A \times T$$

$$A \times T$$

$$LU \times Pb$$



Cost: Worrying about the Constant, BLAS

 $O(n^3)$ really means

$$\alpha \cdot n^3 + \beta \cdot n^2 + \gamma \cdot n + \delta.$$

All the non-leading and constants terms swept under the rug. But: at least the leading constant ultimately matters.

Getting that constant to be small is surprisingly hard, even for something deceptively simple such as matrix-matrix multiplication.

Idea: Rely on library implementation:
$$BLAS$$
 (Fortran)

Level 1 $\mathbf{z} = \alpha \mathbf{x} + \mathbf{y}$ vector-vector operations $O(n)$

?axpy

Level 2 $\mathbf{z} = A\mathbf{x} + \mathbf{y}$ matrix-vector operations $O(n^2)$
?gemv

Level 3 $C = AB + \beta C$ matrix-matrix operations $O(n^3)$

?gemm, ?trsm

LAPACK

LAPACK: Implements 'higher-end' things (such as LU) using BLAS Special matrix formats can also help save const significantly, e.g.

- banded
- sparse
- symmetric
- triangular

Sample routine names:

- dgesvd, zgesdd
- ▶ dgetrf, dgetrs

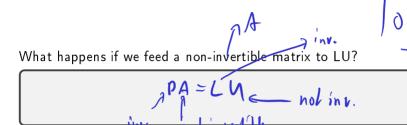
LU on Blocks: The Schur Complement

Given a matrix

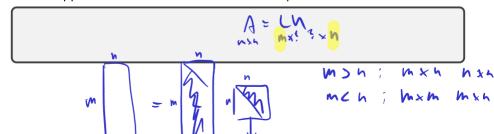
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}, \supset - C A^{-1}$$

can we do 'block LU' to get a block triangular matrix?

LU: Special cases



What happens if we feed LU an $m \times n$ non-square matrices?



Round-off Error in LU

Consider factorization of $\begin{bmatrix} \epsilon \\ 1 \end{bmatrix}$ where $\epsilon < \epsilon_{\mathsf{mach}}$:

Without pivoting:
$$L = \begin{bmatrix} 1 & 0 \\ 1/\epsilon & 1 \end{bmatrix}$$
, $U = \begin{bmatrix} \epsilon & 1 \\ 0 & 1 - 1/\epsilon \end{bmatrix}$

Rounding:
$$fl(U) = \begin{bmatrix} \epsilon & 1 \\ 0 & -1/\epsilon \end{bmatrix}_{e}$$

This leads to
$$L \operatorname{fl}(U) = \begin{bmatrix} \epsilon & 1 \\ 1 & 0 \end{bmatrix}$$
, a backward error of $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Permuting the rows of A in partial pivoting gives $PA = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$

$$\blacktriangleright \text{ We now compute } L = \begin{bmatrix} 1 & 0 \\ \epsilon & 1 \end{bmatrix}, \ U = \begin{bmatrix} 1 & 1 \\ 0 & 1 - \epsilon \end{bmatrix}, \text{ so fl}(U) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

▶ This leads to
$$L$$
 fl $(U) = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 + \epsilon \end{bmatrix}$, a backward error of $\begin{bmatrix} 0 & 0 \\ 0 & \epsilon \end{bmatrix}$.

Changing matrices

$$A_{x=0}$$

$$A_{x=0}$$

$$A_{x=0}$$

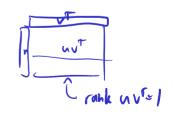
$$A_{x=0}$$

$$A_{x=0}$$

Seen: LU cheap to re-solve if RHS changes. (Able to keep the expensive bit, the LU factorization) What if the *matrix* changes?

$$(A + uv^{\dagger})^{-1} = A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u}$$

Demo: Sherman-Morrison



In-Class Activity: LU

In-class activity: LU and Cost

Outline

Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares Introduction Sensitivity and Conditioning Solving Least Squares

Eigenvalue Problem

Nonlinear Equation

Ontimizatio

Interpolatio

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODE:

Partial Differential Equations and Sparse Linear Algebr

Fast Fourier Transform

What about non-square systems?

Specifically, what about linear systems with 'tall and skinny' matrices? (A: $m \times n$ with m > n) (aka overdetermined linear systems)

Specifically, any hope that we will solve those exactly?