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Find an orthogonal matrix Q to zero out the lower part of a vector a.
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Householder Reflectors: Properties
Seen from picture (and easy to see with algebra):
Ha = e].

Remarks: h“h—\,

> Q: What if we want to zero out only the j + 1th through nth entry?
A: Use e; above.

» A product H,--- Hi1A = R of Householders makes it easy (and quite
efficient!) to build a QR factorization.

> It turns out v/ = a + ||a||, e; works out, too—just pick whichever one
causes less cancellation. -

> His symmetric ~

~

» H is orthogonal

Demo: 3x3 Householder demo




Givens Rotations

If reflections work, can we make rotations work, too?
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Demo: 3x3 Givens demo
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Rank-Deficient Matrices and QR

What happens with QR for rank-deficient matrices?
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Rank-Deficient Matrices and Least-Squares

What happens with Least Squares for rank-deficient matrices?
AxZ=b

» QR still finds a solution with minimal residual

» By QR it's easy to see that least squares with a short-and-fat matrix is
equivalent to a rank-deficient one.
» But: No longer unique. x + n for n € N(A) has the same residual.
» In other words: Have more freedom
Or: Can demand another condition, for example:
> Minimize ||b — Ax|3, and
> minimize ||x||§ simultaneously.
Unfortunately, QR does not help much with that — Need better tool.



Singular Value Decomposition (SVD)

What is the Singular Value Decomposition of an m x n matrix?
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SVD: What's this thing good for? (1)
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SVD: What's this thing good for? (I1)

» Low-rank Approximation
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SVD: What's this thing good for? (I11)

» The minimum norm solution to Ax = b:




SVD: Minimum-Norm, Pseudoinverse

y = T U'b is the minimum norm-solution to £y = UTb.
Observe ||x[|; = [|yll,-

x=VITUb
solves the minimum-norm least-squares problem.

Define At = VEtUT and call it the pseudoinverse of A.
Coincides with prior definition in case of full rank.



