

Householder Transformations
Refle dum

A = QR ~ Q A= R

Find an orthogonal matrix Q to zero out the lower part of a vector a.

Householder Reflectors: Properties

Seen from picture (and easy to see with algebra):

$$Ha = \mathbf{e}_1.$$

Remarks:

- Q: What if we want to zero out only the i + 1th through nth entry? A: Use e_i above.
- A product $H_n \cdots H_1 A = R$ of Householders makes it easy (and quite efficient!) to build a QR factorization.
- ▶ It turns out $\mathbf{v}' = \mathbf{a} + \|\mathbf{a}\|_2 \mathbf{e}_1$ works out, too—just pick whichever one causes less cancellation. \searrow
- ► H is symmetric -
- ► *H* is orthogonal ¬

Demo: 3x3 Householder demo

Givens Rotations

If reflections work, can we make rotations work, too?

$$\begin{pmatrix} c & s \\ -s & c \end{pmatrix} \begin{pmatrix} a_1 \\ a_1 \end{pmatrix} = \begin{pmatrix} s & a_1 + a_1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} a_1 & b_1 \\ b_2 & -a \end{pmatrix} = 0$$

Demo: 3x3 Givens demo

Rank-Deficient Matrices and QR

What happens with QR for rank-deficient matrices?

(smll)
$$A = 0$$

$$h \neq 0$$

$$h \Rightarrow 0$$

Rank-Deficient Matrices and Least-Squares

What happens with Least Squares for rank-deficient matrices?

$$Ax \cong b$$

- ► QR still finds a solution with minimal residual
- ▶ By QR it's easy to see that least squares with a short-and-fat matrix is equivalent to a rank-deficient one.
- **But**: No longer unique. $\mathbf{x} + \mathbf{n}$ for $\mathbf{n} \in \mathcal{N}(A)$ has the same residual.
- ▶ In other words: Have more freedom
 - Or: Can demand another condition, for example:
 - ightharpoonup Minimize $\|\mathbf{b} A\mathbf{x}\|_2^2$, and
 - minimize $\|\mathbf{x}\|_2^2$, simultaneously. Unfortunately, QR does not help much with that \to Need better tool.

Singular Value Decomposition (SVD)

What is the Singular Value Decomposition of an $m \times n$ matrix?

SVD: What's this thing good for? (I)

$$||A||_2 = \sigma_1$$

 $(\operatorname{ond}(A) = \sigma_1/\sigma_n$
 $\operatorname{rank}(A) = H$ now zero singular
 $\operatorname{Num} \operatorname{rank}(A, 4) = H$ singular values $> \varepsilon$

SVD: What's this thing good for? (II)

► Low-rank Approximation

```
Echart - Your - Mirshy
```

SVD: What's this thing good for? (III)

▶ The minimum norm solution to $Ax \cong b$:	

SVD: Minimum-Norm, Pseudoinverse

 $\mathbf{y} = \Sigma^+ U^T \mathbf{b}$ is the minimum norm-solution to $\Sigma \mathbf{y} \cong U^T \mathbf{b}$. Observe $\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2$.

$$\mathbf{x} = V \mathbf{\Sigma}^+ U^T \mathbf{b}$$

solves the minimum-norm least-squares problem.

Define $A^+ = V\Sigma^+U^T$ and call it the pseudoinverse of A. Coincides with prior definition in case of full rank.