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Rank-Deficient Matrices and Least-Squares

What happens with Least Squares for rank-deficient matrices?

Ax=b ’Mx-lﬂh Sal

» QR still finds a solution with minimal residual

» By QR it's easy to see that least squares with a short-and-fat matrix is
equivalent to a rank-deficient one.

» But: No longer unique/X + n 1oy n € N(A) has the same residual.
v\ —

» |n other words: Have more freedom
Or: Can deman other condition, for example:
» Minimize

» minimize , simultaneously.
Unfortunately, QR does not help much with that — Need better tool.



Singular Value Decomposition (SVD)
co/s of v

What is the Singular Value Decompositiow n matrix? M]l‘} 3"’7' e
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SVD: What's this thing good for? (1)
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SVD: What's this thing good for? (I1)

» Low-rank Approximation
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Demo: Image compression
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SVD: What's this thing good for? (I11)

» The minimum norm solution to Ax = b: A - V] v
y by I € WeVT x b y: Vs
S"““”“\’ how, T, ~y” N,

) ZVTx=Uu'h 9

b:’\‘k J):;clo/) &) L’\’f ”)s/’z;”y”!
-ULV) <) 5 v i UWL Leo-u.}t 4
L[( ) &, W)L")m“

Y,

\ {i” = (W) /o (il i)

(> 0 (I’Ld’, k]



] wik dodw dhe salulo b dofad (Sa_

Axsh L Agrt

= SRR
=T L~

N—————
) Zugmg “pjnms( Flmeh" v. of A'}




SVD: Minimum-Norm, Pseudoinverse

y = T U'b is the minimum norm-solution to £y = UTb.
Observe ||x[|; = [|yll,-

x=VITUb
solves the minimum-norm least-squares problem.

Define At = VEtUT and call it the pseudoinverse of A.
Coincides with prior definition in case of full rank.



In-Class Activity: Householder, Givens, SVD

In-class activity: Householder, Givens, SVD




Comparing the Methods

Methods to solve least squares with A an m x n matrix:
> Form: ATA: n’m/2
Solve with AT A: n3/6
» Solve with Householder: mn? — n®/3

v

If m~ n, about the same

» If m > n: Householder QR requires about twice as much work as
normal equations

» SVD: mn? + n® (with a large constant)

Demo: Relative cost of matrix factorizations




Outline

Eigenvalue Problems
Sensitivity
Properties and Transformations
Computing Eigenvalues
Krylov Space Methods



Eigenvalue Problems: Setup/Math Recap

._Qn, svd (A )
ez"%V(Ar/’}

> @s called an eigenvector of A if there exists a A so that

[L-svp

Ais an n X n matrix.

Ax:/\5_.

» In that case, A is called an eigenvalue.
» The set of all eigenvalues A(A) is called the spectrum.
» The spectral radius is the magnitude of the biggest eigenvalue:

—————m——

p(A) = max {[A] : A(A)}

X 6+—°\\>s§-”( 'ﬂ\"f-w ¢ = O



Finding Eigenvalues
How do you find eigenvalues?

Ax=Xx & (A= A)x=0
<A — M singular < det(A— M) =0

det(A — A/) is called the characteristic polynomial, which has degree
n, and therefore n (potentially complex) roots.

Does that help algorithmically? Abel showed that for n > 5 there is
no general formula for the roots of the polynomial. (i.e. no analog
to the quadratic formula for n = 5) IOW: no.

Algorithmically, that means we will need to approximate. So far (e.g.
for LU and QR), if it had not been for FP error, we would have
obtained exact answers. For eigenvalue problems, that is no longer
true-we can only hope for an approximate answer.




