Today	Announcements
	- HW5
	- Modular/testable numeric
	code
	- Complaint penad
	 You may notice researchers from a psychology lab here on campus that are visiting our classroom today to make observations for a research study. We are going to continue with our class as usual while they observe.

Eigenvalue Problems: Setup/Math Recap

A is an $n \times n$ matrix.

 $\mathbf{x} \neq \mathbf{0}$ is called an *eigenvector* of A if there exists a λ so that

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

- ln that case, λ is called an *eigenvalue*.
- ▶ The set of all eigenvalues $\lambda(A)$ is called the spectrum.
- ► The *spectral radius* is the magnitude of the biggest eigenvalue:

$$\rho(A) = \max\{|\lambda| : \lambda(A)\}$$

Finding Eigenvalues

How do you find eigenvalues?

$$A\mathbf{x} = \lambda \mathbf{x} \Leftrightarrow (A - \lambda I)\mathbf{x} = 0$$

$$\Leftrightarrow A - \lambda I \text{ singular} \Leftrightarrow \det(A - \lambda I) = 0$$

 $det(A - \lambda I)$ is called the *characteristic polynomial*, which has degree n, and therefore n (potentially complex) roots.

Does that help algorithmically? Abel-Ruffini theorem: for $n \ge 5$ is no general formula for roots of polynomial. IOW: no.

- For LU and QR, we obtain exact answers (except rounding).
- For eigenvalue problems: not possible—must approximate.

Demo: Rounding in characteristic polynomial using SymPy

Multiplicity

What is the *multiplicity* of an eigenvalue?

Actually, there are two notions called multiplicity:

- ► Algebraic Multiplicity: multiplicity of the root of the characteristic polynomial
- ► Geometric Multiplicity: #of lin. indep. eigenvectors

In general: $AM \geqslant GM$.

If AM > GM, the matrix is called *defective*.

An Example

Give characteristic polynomial, eigenvalues, eigenvectors of

$$\begin{bmatrix} 1 & 1 \\ & 1 \end{bmatrix}. \qquad \lambda 1 - A$$

$$(P = (\lambda - 1)^{2} \rightarrow ev. \mid w \mid AM 2$$

$$(1 \mid 1)(x) = (x) \rightarrow x + y = x$$

$$(y)(x)$$

$$(y)(x)$$

$$(y)(x)$$

Diagonalizability

When is a matrix called diagonalizable?

Suppose | have | lindep, evyencedars |
$$\chi = \begin{pmatrix} 1 & 1 & 1 \\ \chi_1 & \chi_2 & \chi_3 \\ \chi_1 & \chi_2 & \chi_3 \end{pmatrix} = \chi_0$$

A $\chi = \begin{pmatrix} 1 & 1 & 1 \\ \chi_1 & \chi_2 & \chi_3 \\ \chi_1 & \chi_2 & \chi_3 \end{pmatrix} = \chi_0$

Similar Matrices

Related definition: Two matrices A and B are called similar if there exists an invertible matrix X so that $A = XBX^{-1}$.

In that sense: "Diagonalizable" = "Similar to a diagonal matrix".

Observe: Similar A and B have same eigenvalues. (Why?)

Suppose
$$Av = \lambda v$$
. $B = \times^{-1}A \times$. $U := \times^{-1}v$

$$B = \times^{-1}A \times \times^{-1}v = X^{-1}Av = \lambda \times^{-1}v$$

$$= \lambda v.$$

Eigenvalue Transformations (I)

What do the following transformations of the eigenvalue problem $Ax = \lambda x$ do?

Shift. $A \rightarrow A - \sigma I$

$$(A \circ I) \times = A \times - \sigma I \times = A \times - \sigma \times = (A - \sigma) \times$$

Inversion
$$A o A^{-1}$$

Power. $A \rightarrow A^k$

Eigenvalue Transformations (II)

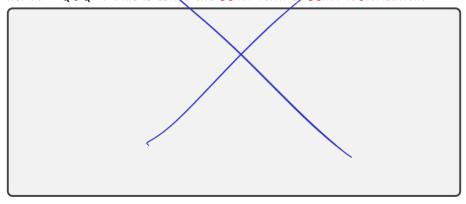
Polynomial
$$A \rightarrow aA^2 + bA + cI$$

$$(\alpha A^2 + 1A + cI) \times = (\alpha \lambda^2 + 6\lambda + c) \times$$

Similarity $T^{-1}AT$ with T invertible

Schur form

Show: Every matrix is orthonormally similar to an upper triangular matrix, i.e. $A = QUQ^T$. This is called the Schur form or Schur factorization.



Schur Form: Comments and Eigenvalues

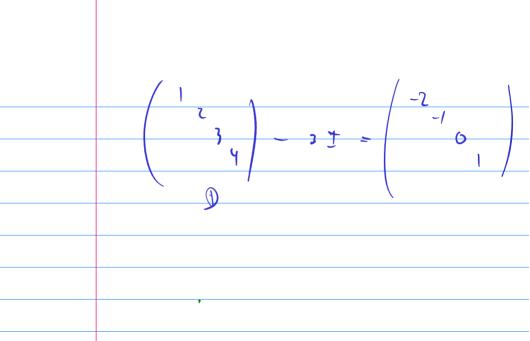
For complex λ :

- ► Either complex matrices, or
- \triangleright 2 × 2 blocks on diag.

Also, if we knew how to compute Schur form, how would it help us find eigenvalues?

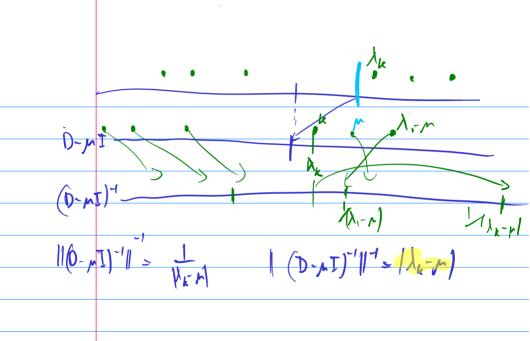
Sensitivity (I)

Assume A not defective. Suppose $X^{-1}AX = D$. Perturb $A \rightarrow A + E$. What happens to the eigenvalues?



Sensitivity (II) Suppose La is the eigenvolve closest to m $X^{-1}(A+E)X = D+F$. Have $\|(\mu I - D)^{-1}\|^{-1} \le \|F\|$. 11(nI-D)-111-1= (m-/w) $| M - \lambda_k | = || (MI - D)^{-1} ||^{-1} < ||^{\frac{1}{2}} || = || \times^{-1} E \times ||$ from muth $F = \times^{-1} E \times || = || \times || || \times^{-1} || || || ||$ = crind(X) /Ell has le moved

5 The symm eigenvalue problem is well-behaved?



Power Iteration

What are the eigenvalues of A^{1000} ?

Assume $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$ with eigenvectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$. Further assume $||\mathbf{x}_i|| = 1$.

Power Iteration: Issues?

What could go wrong with Power Iteration?				

What about Eigenvalues?

Power Iteration g eigenvalues?	generates eig	envectors.	What if we v	would like to	know