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Interpolation: Setup

//

Given: ()N, ()Y,
Wanted: Function f so that f(x;) = y;

How is this not the same as function fitting? {from least squares)
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Interpolation: Setup (1)

Given: (x)N,, (v)¥, B
Wanted: Function f so that f(x;) = y;

Does this problem have a unique answer?




Interpolation: Importance

Why is interpolation important?




Making the Interpolation Problem Unique
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Existence/Sensitivity

Solution to the interpolation problem: Existence? Uniqueness?
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Sensitivity?
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Modes and Nodes (aka Functions and Points)

Both function basis and point set are under our control. What do we pick?

Ideas for basis fu Ideas for points:

» Monomiafts 1, x,x%,x3, x4, ... Equispaced
» Functions =/ — > =Clustered’ (so-called
‘Lagrange basis’ Chebyshev/Gauss/. .. nodes)

» Functions that make V

. . . Specific issues:
triangular — ‘Newton basis

» Why not monomials on

» Splines (piecewise polynomials) equispaced points?

» Orthogonal polynomials Demo: Monomial interpolation
» Sines and cosines > Why not equispaced?

» ‘Bumps’ (‘Radial Basis Demo: Choice of Nodes for

Functions’) Polynomial Interpolation




Lagrange Interpolation

Find a basis so that V =1, i.e.

o[} 125

0 otherwise.
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Lagrange Polynomials: General Form

o HT:l,k;éj(X = Xk)

£l = HT:l,k;éj(Xj — Xk)



Newton Interpolation

Find a basis so that V is triangular.
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Why not Lagrange/Newton?
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Better conditioning: Orthogonal polynomials
What caused monomials to have a terribly conditioned Vandermonde?

Mew/zj " 0‘0}0,

What's a way to make sure two vectors are not like that?
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But polynomials are functions!
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Constructing Orthogonal Polynomials

How can we find an orthogonal basis?

Demo: Orthogonal Polynomials — Obtained: Legendre polynomials.
But how can | practically compute the Legendre polynomials?
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Chebyshev Polynomials: Definitions

Three equivalent definitions:

> Result of Gram-Schmidt with weight 1/;;1@%& is that weight?

!
(Like for Legendre, you won't exactly get the stgndard normalization if

you do this.)
» Ti(x) = cos(k cos~1(x))
» Ti(x) = 2xTk(x) — Tk—1(x) plus To =1, Tp = x

Demo: Chebyshev Interpolation (Part 1)




Chebyshev Interpolation
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What is the Vanderm nde matrix for C eﬁi/shev polynomials?
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Chebyshev Nodes

Might also consider zeros (instead of roots) of T:

2i+1 .
x,—cos< ok 7r> (i=1...,k).

The Vandermonde for these (with Ty) can be applied in O(N log N) time,
too.

It turns out that we were still looking for a good set of interpolation nodes.
We came up with the criterion that the nodes should bunch towards the
ends. Do these do that?

Demo: Chebyshev Interpolation (Part 2)




Chebyshev Interpolation: Summary

» Chebyshev interpolation is fast and works extremely well
> http://www.chebfun.org/ andf ATAP

» In 1D, they're a very good answe e interpolation question

» But sometimes a piecewise approximation (with a specifiable level of
smoothness) is more suited to the application
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In-Class Activity: Interpolation

In-class activity: Interpolation




Interpolation Error

If fis n times continuously differentiable on a closed interval / and
pn—1(x) is a polynomial of degree at most n that interpolates f at n
distinct points {x;} (i = 1,..., n) in that interval, then for each x in the
interval there exists £ in that interval such that

F(E)

n!

F(x) = Pt (x) = — L (x = x1)(x = x2) - (x = xn)-




