Today:	Announcements;
-	
- Interpolation	- Examle 13
\	- Examle 13 - Examle 14
	- HW10

Interpolation: Setup

Wanted: Function f so that $f(x_i) = y_i$

How is this not the same as function fitting? (from least squares)

Interpolation: Setup (II)

Given:
$$(x_i)_{i=1}^N$$
, $(y_i)_{i=1}^N$

Wanted: Function f so that $f(x_i) = y_i$

Does this problem have a unique answer?

Interpolation: Importance

Why is interpolation important?					

Making the Interpolation Problem Unique

Existence/Sensitivity

Solution to the interpolation problem: Existence? Uniqueness?

Same as Dincar System

Sensitivity?

Modes and Nodes (aka Functions and Points)

Both function basis and point set are under our control. What do we pick?

Ideas for basis functions:

- Monomials $1, x, x^2, x^3, x^4, \dots$
- Functions that make V=I
 ightarrow 'Lagrange basis'
- Functions that make V triangular o 'Newton basis'
- Splines (piecewise polynomials)
- Orthogonal polynomials
- Sines and cosines
- ► 'Bumps' ('Radial Basis Functions')

Ideas for points:

- Equispaced
- Edge-Clustered' (so-called Chebyshev/Gauss/... nodes)

Specific issues:

- Why not monomials on equispaced points?
 - **Demo:** Monomial interpolation
- Why not equispaced?
 Demo: Choice of Nodes for
 Polynomial Interpolation

Lagrange Interpolation

Find a basis so that V = I, i.e.

$$\varphi_j(x_i) = \begin{cases} 1 & i = j, \\ 0 & \text{otherwise.} \end{cases}$$

$$\varphi_{1}(x) = \frac{(x-x_{2})(x-x_{3})}{(x_{1}-x_{2})(x_{1}-x_{3})}$$

$$\varphi_{2}(x) = \frac{(x-x_{1})}{(x_{2}-x_{3})} \frac{(x-x_{3})}{(x_{2}-x_{3})}$$

Lagrange Polynomials: General Form

$$\varphi_j(x) = \frac{\prod_{k=1, k \neq j}^m (x - x_k)}{\prod_{k=1, k \neq j}^m (x_j - x_k)}$$

Newton Interpolation

Find a basis so that V is triangular.

$$P_{j}(x) = \begin{cases} 1 \\ 1 \\ x - x_{k} \end{cases}$$

$$\Rightarrow solve is full bursubst $\Rightarrow O(L^{2})$

$$\rightarrow divided differences $\Rightarrow O(L^{2})$$$$$

Why not Lagrange/Newton?

Better conditioning: Orthogonal polynomials

What caused monomials to have a terribly conditioned Vandermonde?

What's a way to make sure two vectors are not like that?

But polynomials are functions!

Ver.
$$\rightarrow (\vec{j}, \vec{g}) = \vec{j} \cdot \vec{g} = \sum_{i=1}^{n} \vec{j}_{i} \cdot \vec{g}_{i}$$

func. $\rightarrow (\vec{j}, \vec{g}) = \sum_{i=1}^{n} \vec{j}_{i} \cdot \vec{g}_{i}$

Constructing Orthogonal Polynomials

How can we find an orthogonal basis?					
Demo: Orthogonal Polynomials — Obtained: Legendre polynomials. But how can I practically compute the Legendre polynomials?					

Chebyshev Polynomials: Definitions

Three equivalent definitions:

Result of Gram-Schmidt with weight $1/\sqrt{1-x^2}$. What is that weight?

(Like for Legendre, you won't exactly get the standard normalization if you do this.)

- $T_k(x) = \cos(k\cos^{-1}(x))$
- $T_k(x) = 2xT_k(x) T_{k-1}(x)$ plus $T_0 = 1$, $T_0 = x$

Demo: Chebyshev Interpolation (Part 1)

Chebyshev Interpolation

$$V_{ij} = \cos(i) \left(\frac{1}{\mu} \pi\right)$$
What is the Vandermonde matrix for Chebyshev polynomials?

$$V_{ij} = \cos(i) \left(\frac{1}{\mu} \pi\right)$$
What is the Vandermonde matrix for Chebyshev polynomials?

O(n logn)

Chebyshev Nodes

Might also consider zeros (instead of roots) of T_k :

$$x_i = \cos\left(\frac{2i+1}{2k}\pi\right) \quad (i=1\ldots,k).$$

The Vandermonde for these (with T_k) can be applied in $O(N \log N)$ time, too.

It turns out that we were still looking for a good set of interpolation nodes. We came up with the criterion that the nodes should bunch towards the ends. Do these do that?

Demo: Chebyshev Interpolation (Part 2)

Chebyshev Interpolation: Summary

- Chebyshev interpolation is fast and works extremely well
- http://www.chebfun.org/and.ATAP
- ▶ In 1D, they're a very good answer to the interpolation question
- But sometimes a piecewise approximation (with a specifiable level of smoothness) is more suited to the application

$$\frac{\partial}{\partial x}(1) = 0$$

$$\frac{\partial}{\partial x}(e^{i\lambda x}) = i\lambda e^{i\lambda x}$$

$$\frac{\partial}{\partial x}(e^{i\lambda x}) = \lambda$$

In-Class Activity: Interpolation

In-class activity: Interpolation

Interpolation Error

If f is n times continuously differentiable on a closed interval I and $p_{n-1}(x)$ is a polynomial of degree at most n that interpolates f at n distinct points $\{x_i\}$ (i=1,...,n) in that interval, then for each x in the interval there exists ξ in that interval such that

$$f(x) - p_{n-1}(x) = \frac{f^{(n)}(\xi)}{n!}(x - x_1)(x - x_2) \cdots (x - x_n).$$