CS 450: Numerical Analysis\(^1\)
Introduction to Scientific Computing

University of Illinois at Urbana-Champaign

\(^1\)These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).
Scientific Computing Applications and Context

- **Mathematical modelling for computational science**
 Typical scientific computing problems are numerical solutions to PDEs
 - Newtonian dynamics: simulating particle systems in time
 - Fluid and air flow models for engineering
 - PDE-constrained numerical optimization: finding optimal configurations (used in engineering of control systems)
 - Quantum chemistry (electronic structure calculations): many-electron Schrödinger equation

- **Linear algebra and computation**
 - Linear algebra and numerical optimization are building blocks for machine learning methods and data analysis
 - Computer architecture, compilers, and parallel computing use numerical algorithms (matrix multiplication, Gaussian elimination) as benchmarks
Newton’s laws provide incomplete particle-centric picture

Physical systems can be described in terms of *degrees of freedom* (DoFs)
- A piston moving up and down requires 1 DoF
- 1-particle system requires 3 DoFs
- 2-particle system requires 6 DoFs
- 2-particles at a fixed distance require 5 DoFs

\(N \)-particle system *configuration* described by \(3N \) DoFs

- Trajectories in *configuration space* \((\mathbb{R}^{3N}) \) describe free energy configuration
- Various choice of *basis functions* (i.e. coordinate system) for configuration space are possible

Course Structure

- Complex numerical problems are generally reduced to simpler problems
 - *Discretization* corresponds to representing a continuous function/model by a discrete set of points
 - Nonlinear problems are mapped to linear problems
 - Complicated functions are mapped to polynomials
 - Differential equations are mapped to algebraic equations

- The course topics will follow this hierarchical structure
 - Error, conditioning, and floating point are the starting point for representation and evaluation of algorithms for any numerical problem
 - Linear systems provide the simplest and most important building block for solving linear algebra problems
 - Least squares and eigenvalue problems provide basic technology for matrices
 - Nonlinear equations and optimization make use of matrix algebra to solve more general modelling problems
 - Numerical interpolation, differentiation, and quadrature provide the building blocks to reduce numerical PDE problems to matrix algebra
Numerical Analysis

- **Numerical Problems involving Continuous Phenomena:**

 Given input \(x \in \mathbb{R}^n \), approximate output \(y = f(x) \).

 - Problem is **well-posed** if \(f \) is a smoothly varying function, \(f(\hat{x}) \to f(x) \) as \(\hat{x} \to x \).
 - Otherwise, problem is **ill-posed**.

- **Error Analysis:**

 Quality of approximation is quantified by distance to the solution.

 - If solution \(y = f(x) \) is a scalar, distance from computed solution \(\hat{y} \) to correct answer is the **absolute error** \(\Delta y = \hat{y} - y \),

 while the normalized distance is the **relative error** \(\Delta y/y = (\hat{y} - y)/|y| \).

 - More generally, we are interested in the error \(\Delta y = \hat{y} - y \)

 the magnitude of which is measured by a given **vector norm**.
Sources of Error

- **Representation of Numbers:**
 - We cannot represent arbitrary real numbers in a finite amount of space, e.g. a computer cannot exactly represent π.
 - Moreover, hardware architectures are only well-fit to work with fixed-length (32-bit or 64-bit) representations.
 - As we will see, the best we can do is represent a wide range of numbers with a relatively uniform precision, which corresponds to scientific notation.
 - With scientific notation, we seek to store the most significant digits of each number, so that the magnitude of the relative error in the floating point representation $fl(x)$ for most real numbers x will be $|fl(x) - x|/|x| \leq \epsilon$.

- **Propagated Data Error:** error due approximations in the input, $f(\hat{x}) - f(x)$

- **Computational Error** = $\hat{f}(x) - f(x) = \text{Truncation Error} + \text{Rounding Error}$
 - **Truncation error** is the error made due to approximations made by the algorithm (simplified models used in our approximation).
 - **Rounding error** is the error made due to inexact representation of quantities computed by the algorithm.
Error Analysis

▶ Forward Error:
 Forward error is the computational error of an algorithm
 - **Absolute:** $\hat{f}(x) - f(x)$
 - **Relative:** $(\hat{f}(x) - f(x))/|f(x)|$
 - Usually, we care about the magnitude of the final error, but carrying through signs is important when analyzing error

▶ Backward Error:
 It can be hard to tell what a ‘good’ forward error is, but *backward error analysis* enables us to measure computational error with respect to data propagation error
 - An algorithm is *backward stable* if its a solution to a nearby problem
 - If the computed solution $\hat{f}(x) = f(\hat{x})$ then

 $$\text{backward error} = \hat{x} - x$$
 - More precisely, we want the nearest \hat{x} to x with $\hat{f}(x) = f(\hat{x})$
 - If the backward error is smaller than the propagated data error, the solution computed by the algorithm is as good as possible
Visualization of Forward and Backward Error

\[f(x) = f(\hat{x}) \]
Conditioning

Absolute Condition Number:
The *absolute condition number is a property of the problem, which measures its sensitivity to perturbations in input*

\[
\kappa_{\text{abs}}(f) = \lim_{\text{size of input perturbation} \to 0} \max_{\text{inputs}} \max_{\text{perturbations in input}} \left| \frac{\text{perturbation in output}}{\text{perturbation in input}} \right|
\]

For problem \(f \) at input \(x \) it is simply the derivative of \(f \) at \(x \),

\[
\kappa_{\text{abs}}(f) = \lim_{\Delta x \to 0} \left| \frac{f(x + \Delta x) - f(x)}{\Delta x} \right| = \left| \frac{df}{dx}(x) \right|
\]

When considering a space of inputs \(\mathcal{X} \) it is

\[
\kappa_{\text{abs}} = \max_{x \in \mathcal{X}} \left| \frac{df}{dx}(x) \right|
\]

Relative Condition Number:
The *relative condition number considers relative perturbations in input and output, so that*

\[
\kappa(f) = \kappa_{\text{rel}}(f) = \max_{x \in \mathcal{X}} \lim_{\Delta x \to 0} \left| \frac{(f(x + \Delta x) - f(x)) / f(x)}{\Delta x / x} \right| = \frac{\kappa_{\text{abs}}(f) |x|}{|f(x)|}
\]
What is the condition number of an ill-posed problem?

- If the condition number is bounded and the solution is unique, the problem is well-posed.
- An ill-posed problem f either has no unique solution or has a (relative) condition number of $\kappa(f) = \infty$.
- This condition implies that the solutions to problem f are continuous and differentiable in the given space of possible inputs to f.
- Sometimes well-posedness is defined to only require continuity.
- Generally, $\kappa(f)$ can be thought of as the reciprocal of the distance (in an appropriate geometric embedding of problem configurations) from f to the nearest ill-posed problem.
Stability and Accuracy

Accuracy:

An algorithm is **accurate** if \(\hat{f}(x) = f(x) \) for all inputs \(x \) when \(\hat{f}(x) \) is computed in infinite precision

- In other words, the truncation error is zero (rounding error is ignored)
- More generally, an algorithm is accurate if its truncation error is negligible in the desired context
- Yet more generally, the **accuracy** of an algorithm is expressed in terms of bounds on the magnitude of its truncation error

Stability:

An algorithm is **stable** if its output in finite precision (floating point arithmetic) is always near its output in exact precision

- **Stability** measures the sensitivity of an algorithm to roundoff error
- In some cases, such as the approximation of a derivative using a finite difference formula, there is a trade-off between stability and accuracy
Error and Conditioning

- Two major sources of error: **roundoff** and **truncation** error.
 - Roundoff error concerns floating point error due to finite precision.
 - Truncation error concerns error incurred due to algorithmic approximation, e.g., the representation of a function by a finite Taylor series.

$$f(x + h) \approx g(h) = \sum_{i=0}^{k} \frac{f^{(i)}(x)}{i!} h^i$$

The absolute truncation error of this approximation is

$$f(x + h) - g(h) = \sum_{i=k+1}^{\infty} \frac{f^{(i)}(x)}{i!} h^i = O(h^{k+1}) \text{ as } h \to 0$$

- To study the propagation of roundoff error in arithmetic we can use the notion of conditioning. **The condition number tells us the worst-case amplification of output error with respect to input error.**

$$\kappa(f) = \max_{x \in \mathcal{X}} \lim_{\Delta x \to 0} \left| \frac{(f(x + \Delta x) - f(x))/f(x)}{\Delta x/x} \right| = \left| \frac{f'(x)x}{f(x)} \right|$$

Demo: Truncation vs Rounding
Floating Point Numbers

Scientific Notation

Floating-point numbers are a computational realization of scientific notation,

\[4.12165 \times 10^6, 2.145 \times 10^{-3} \]

- Scientific-notation provides a unique representation of any real number for a given amount of 'precision' (number of significant digits)
- Normalized floating-point numbers are just a binary form of scientific notation,

\[1.01001 \times 2^5, 1.0110 \times 2^{-3} \]

Significand (Mantissa) and Exponent

Given \(x \) with \(s \) leading bits \(x_0, \ldots, x_{s-1} \)

\[
f l(x) = \sum_{i=0}^{s-1} x_i 2^{k-i} = \underbrace{x_0.x_1 \ldots x_{s-1}}_{\text{significand/mantissa}} \times 2^\text{exponent}
\]

A floating point number’s binary representation has \(s - 1 \) significand bits (excluding \(x_0 = 1 \)), some bits to represent the exponent, and a sign bit.
Rounding Error

- **Maximum Relative Representation Error (Machine Epsilon)**
 - If we have s significant digits in scientific notation, our error is bounded to variations of 1 in least significant digit, whose magnitude relative to the number we are trying to represent is 10^{1-s} in decimal and 2^{1-s} in binary.
 - Formally, with s significant binary digits the relative representation error of positive real number x is (with $k = \lceil \log_2(|x|) \rceil$ and each $x_i \in \{0, 1\}$)

 $$x = \sum_{i=0}^{\infty} x_i 2^{k-i} = x_{\text{rem}} + \sum_{i=0}^{s-1} x_i 2^{k-i}, \quad \text{where} \quad |x_{\text{rem}}/x| \leq 2^{1-s}$$

 - The maximum such error, 2^{1-s}, is called **machine epsilon**,

 $$\epsilon = \arg\min_{\epsilon > 0} (\text{fl}(1 + \epsilon) = 1 + \epsilon)$$
Rounding Error in Operations (I) [Activity: Cancellation in Standard Deviation Computation]

▶ Addition and Subtraction
▶ Subtraction is just negation of a sign bit followed by addition
▶ Catastrophic cancellation occurs when the magnitude of the result is much smaller than the magnitude of both operands
▶ Cancellation corresponds to losing significant digits, e.g.

\[3.1423 \times 10^5 - 3.1403 \times 10^5 = 2.0 \times 10^2 \]

▶ Generally, we can bound the error incurred during addition of two real numbers \(x, y\) in floating point (ignoring final rounding, which has relative error \(\epsilon\)) as

\[
\frac{|(x + y) - (\text{fl}(x) + \text{fl}(y))|}{|x + y|} \leq \frac{\epsilon(|x| + |y|)}{|x + y|}
\]

by this we can also observe that the condition number of addition of \(x, y\) i.e. \(f(x, y) = x + y\), is \(\kappa(f(x, y)) = (|x| + |y|)/|x + y|\)
▶ Consequently, when \(x + y = 0\) and \(x, y \neq 0\) addition is ill-posed
Multiplication and Division

- Multiplication is a lot safer than addition in floating point
- To analyze its error, we use a 2-term Taylor series approximation typical in relative error analysis

\[
f(\epsilon) = (1 + n\epsilon)^k \approx f(0) + \frac{df}{d\epsilon}(0)\epsilon = 1 + kn\epsilon
\]

since \(\epsilon\) is small, this linear approximation is accurate (to within \(O(\epsilon^2)\))

- Aside from final rounding, we can bound the error in multiplication as

\[
\left| \frac{xy - \text{fl(fl(x)fl(y)))}}{|xy|} \right| \leq \left| \frac{xy - (x(1 + \epsilon)y(1 + \epsilon))(1 + \epsilon)}{|xy|} \right| \approx 3\epsilon
\]

- Consequently, multiplication \(f(x, y) = xy\) is always well-conditioned, \(\kappa(f) \approx 3\)
- Division is multiplication by the reciprocal, and reciprocation is also well-conditioned
Exceptional and Subnormal Numbers

- **Exceptional Numbers**

 We had mentioned that the leading bit in normalized floating point numbers is assumed to be 1, but how do represent 0?

 - *Exceptional* floating point numbers are 0, −0, ∞, −∞, and NaN = 0/0 = ∞ − ∞

- **Subnormal (Denormal) Number Range**

 - The range of magnitudes of normalized floating point numbers with an exponent range \([-e, e]\) is \([2^{-e}, 2^{e+1}(1 - \epsilon/2)]\)

 - For numbers of magnitude < 2−e, the relative representation error is unbounded

 - *Subnormal numbers* are evenly spaced in \([-2^{-e}, 2^{-e}]\) with gaps of \(\epsilon 2^{-e}\)

 - Consequently, the absolute representation error in \([-2^{-e}, 2^{-e}]\) is at most \(\epsilon 2^{-e}\)

- **Gradual Underflow: Avoiding underflow in addition**

 The main benefit of subnormal numbers is that for any machine numbers (floating-point numbers) \(x\) and \(y\), \(fl(x - y) = 0\) if and only if \(x = y\), since the gap between any two representable numbers is \(|x - y| \geq \epsilon 2^{-e}|
Floating Point Number Line

\[\epsilon \cdot 2^{-L} \]

smaller than or equal to the gap between any two floating point numbers, so

\[fl(a - b) = 0 \text{ iff } fl(a) = fl(b) \]

\[0 \]

\[2^{-L} \]

normalized

\[1.x \cdot 2^E, \ E \in [-L, L] \]

subnormal

\[0.x \cdot 2^{-L} \]

UFL