CS 450: Numerical Analysis¹
Linear Least Squares

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).
Linear Least Squares

Find \(x^* = \arg\min_{x \in \mathbb{R}^n} ||Ax - b||_2 \) where \(A \in \mathbb{R}^{m \times n} \):

Since \(m \geq n \), the minimizer generally does not attain a zero residual \(Ax - b \).

We can rewrite the optimization problem constraint via

\[
\begin{align*}
 x^* & = \arg\min_{x \in \mathbb{R}^n} ||Ax - b||_2^2 = \arg\min_{x \in \mathbb{R}^n}
 \left[(Ax - b)^T (Ax - b) \right]
\end{align*}
\]

Given the SVD \(A = U \Sigma V^T \) we have \(x^* = V \Sigma^\dagger U^T b \), where \(\Sigma^\dagger \) contains the reciprocal of all nonzeros in \(\Sigma \):

\begin{itemize}
 \item The minimizer satisfies \(U \Sigma V^T x^* \cong b \) and consequently also satisfies
 \begin{align*}
 \Sigma y^* & \cong d \quad \text{where } y^* = V^T x^* \quad \text{and } d = U^T b.
 \end{align*}
 \item The minimizer of the reduced problem is \(y^* = \Sigma^\dagger d \), so \(y_i = d_i/\sigma_i \) for \(i \in \{1, \ldots, n\} \) and \(y_i = 0 \) for \(i \in \{n + 1, \ldots, m\} \).
\end{itemize}
Conditioning of Linear Least Squares

Consider fitting a line to a collection of points, then perturbing the points:

- If our line closely fits all of the points, a small perturbation to the points will not change the ideal fit line (least squares solution) much. Note that, if a least squares solution has a very small residual, any other solution with a residual close to as small, should be close to parallel to this solution.

- When the points are distributed erratically and do not admit a reasonable linear fit, then the least squares solution has a large residual, and totally different lines may exist with a residual nearly as small. For example, if the points are in a ball around the origin, any linear fit has the same residual. A tiny perturbation could then perturb the least squares solution to be perpendicular to the original.

LLS is ill-posed for any A, unless we consider solving for a particular b

- If b is entirely outside the span of A then any perturbation to A or b can completely defines the new solution. Similarly, if most of b is outside the span of A, a perturbation can cause the solution to fluctuate wildly.

- On other hand, if for a particular b we can find a solution with (near-)zero residual, a small relative perturbation to b or A will have an effect similar to that of a linear system perturbation (growth bounded by $\kappa(A) = \sigma_{\text{max}}/\sigma_{\text{min}}$).
Normal Equations

- Normal equations are given by solving $A^T Ax = A^T b$:

 If $A^T Ax = A^T b$ then

 $$(U \Sigma V^T)^T U \Sigma V^T x = (U \Sigma V^T)^T b$$

 $$\Sigma^T \Sigma V^T x = \Sigma^T U^T b$$

 $$V^T x = (\Sigma^T \Sigma)^{-1} \Sigma^T U^T b = \Sigma^\dagger U^T b$$

 $$x = V \Sigma^\dagger U^T b = x^*$$

- However, solving the normal equations is a more ill-conditioned problem than the original least squares algorithm.

 Generally we have $\kappa(A^T A) = \kappa(A)^2$ (the singular values of $A^T A$ are the squares of those in A). Consequently, solving the least squares problem via the normal equations may be unstable because it involves solving a problem that has worse conditioning than the initial least squares problem.
Solving the Normal Equations

- If \(A \) is full-rank, then \(A^T A \) is symmetric positive definite (SPD):
 - Symmetry is easy to check \((A^T A)^T = A^T A\).
 - \(A \) being full-rank implies \(\sigma_{\text{min}} > 0 \) and further if \(A = U \Sigma V^T \) we have
 \[
 A^T A = V^T \Sigma^2 V
 \]
 which implies that rows of \(V \) are the eigenvectors of \(A^T A \) with eigenvalues \(\Sigma^2 \) since
 \[
 A^T A V = V^T \Sigma^2.
 \]

- Since \(A^T A \) is SPD we can use Cholesky factorization, to factorize it and solve linear systems:

 \[
 A^T A = LL^T
 \]
QR Factorization

- If A is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix R with a positive diagonal such that $A = QR$
 - Given $A^T A = LL^T$, we can take $R = L^T$ and obtain $Q = AL^{-T}$, since $\begin{pmatrix} L^{-1} A^T & AL^{-T} \end{pmatrix} = I$ implies that Q has orthonormal columns.

- A reduced QR factorization (unique part of general QR) is defined so that $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns and R is square and upper-triangular. A full QR factorization gives $Q \in \mathbb{R}^{m \times m}$ and $R \in \mathbb{R}^{m \times n}$, but since R is upper triangular, the latter $m - n$ columns of Q are only constrained so as to keep Q orthogonal. The reduced QR factorization is given by taking the first n columns Q and \hat{Q} the upper-triangular block of R, \hat{R} giving $A = \hat{Q}\hat{R}$.

- We can solve the normal equations (and consequently the linear least squares problem) via reduced QR as follows

$$A^T Ax = A^T b \Rightarrow \hat{R}^T \hat{Q}^T \hat{Q} \hat{R} x = \hat{R}^T \hat{Q}^T b \Rightarrow \hat{R} x = \hat{Q}^T b$$
Gram-Schmidt Orthogonalization

▶ Classical Gram-Schmidt process for QR:

The Gram-Schmidt process orthogonalizes a rectangular matrix, i.e. it finds a set of orthonormal vectors with the same span as the columns of the given matrix. If a_i is the ith column of the input matrix, the ith orthonormal vector (ith column of Q) is

$$q_i = b_i / \| b_i \|_2,$$

where

$$b_i = a_i - \sum_{j=1}^{i-1} \langle q_j, a_i \rangle q_j.$$

▶ Modified Gram-Schmidt process for QR:

Better numerical stability is achieved by orthogonalizing each vector with respect to each previous vector in sequence (modifying the vector prior to orthogonalizing to the next vector), so $b_i = \text{MGS}(a_i, i - 1)$, where $\text{MGS}(d, 0) = d$ and

$$\text{MGS}(d, j) = \text{MGS}(d - \langle q_j, d \rangle q_j, j - 1).$$
A Householder transformation $Q = I - 2uu^T$ is an orthogonal matrix defined to annihilate entries of a given vector z, so $\|z\|_2 Q e_1 = z$:

- Householder QR achieves unconditional stability, by applying only orthogonal transformations to reduce the matrix to upper-triangular form.
- Householder transformations (reflectors) are orthogonal matrices, that reduce a vector to a multiple of the first elementary vector, $\alpha e_1 = Qz$.
- Because multiplying a vector by an orthogonal matrix preserves its norm, we must have that $|\alpha| = \|z\|_2$.
- As we will see, this transformation can be achieved by a rank-1 perturbation of identify of the form $Q = I - 2uu^T$ where u is a normalized vector.
- Householder matrices are both symmetric and orthogonal implying that $Q = Q^T = Q^{-1}$.

Imposing this form on Q leaves exactly two choices for u given z,

$$u = \frac{z \pm \|z\|_2 e_1}{\|z \pm \|z\|_2 e_1\|_2}$$
Applying Householder Transformations

The product $x = Qw$ can be computed using $O(n)$ operations if Q is a Householder transformation

$$x = (I - 2uu^T)w = w - 2\langle u, w \rangle u$$

Householder transformations are also called *reflectors* because their application reflects a vector along a hyperplane (changes sign of component of w that is parallel to u)

$I - uu^T$ would be an elementary projector, since $\langle u, w \rangle u$ gives component of w pointing in the direction of u and

$$x = (I - uu^T)w = w - \langle u, w \rangle u$$

subtracts it out.

On the other hand, Householder reflectors give

$$y = (I - 2uu^T)w = w - 2\langle u, w \rangle u = x - \langle u, w \rangle u$$

which reverses the sign of that component, so that $\|y\|_2 = \|w\|_2$.

Activity: Householder QR
Givens Rotations

- Householder reflectors reflect vectors, Givens rotations rotate them
 - Householder matrices reflect vectors across a hyperplane, by negating the sign of the vector component that is perpendicular to the hyperplane (parallel to \(u \))
 - Any vector can be reflected to a multiple of an elementary vector by a single Householder rotation (in fact, there are two rotations, resulting in a different sign of the resulting vector)
 - Givens rotations instead rotate vectors by an axis of rotation that is perpendicular to a hyperplane spanned by two elementary vectors
 - Consequently, each Givens rotation can be used to zero-out (annihilate) one entry of a vector, by rotating it so that the component of the vector pointing in the direction of the axis corresponding to that entry, points into a different axis

- Givens rotations are defined by orthogonal matrices of the form
 \[
 \begin{bmatrix}
 c & s \\
 -s & c
 \end{bmatrix}
 \]

- Given a vector \(\begin{bmatrix} a \\ b \end{bmatrix} \) we define \(c \) and \(s \) so that
 \[
 \begin{bmatrix}
 c & s \\
 -s & c
 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix}
 \sqrt{a^2 + b^2} \\
 0
 \end{bmatrix}
 \]

- Solving for \(c \) and \(s \), we get
 \[
 c = \frac{a}{\sqrt{a^2+b^2}}, \quad s = \frac{b}{\sqrt{a^2+b^2}}
 \]
QR via Givens Rotations

▶ We can apply a Givens rotation to a pair of matrix rows, to eliminate the first nonzero entry of the second row

\[
\begin{bmatrix}
I & c & s \\
-s & I & c \\
\end{bmatrix}
\begin{bmatrix}
\cdots \\
\vdots \\
\vdots \\
\end{bmatrix}
=
\begin{bmatrix}
\cdots \\
\sqrt{a^2 + b^2} \\
\vdots \\
0 \\
\vdots \\
\end{bmatrix}
\]

▶ Thus, \(n(n - 1)/2\) Givens rotations are needed for QR of a square matrix

▶ Each rotation modifies two rows, which has cost \(O(n)\)
▶ Overall, Givens rotations cost \(2n^3\), while Householder QR has cost \((4/3)n^3\)
▶ Givens rotations provide a convenient way of thinking about QR for sparse matrices, since nonzeros can be successively annihilated, although they introduce the same amount of fill (new nonzeros) as Householder reflectors

Demo: Relative cost of matrix factorizations
Suppose we want to solve a linear system or least squares problem with a (nearly) rank deficient matrix A

- A rank-deficient (singular) matrix satisfies $Ax = 0$ for some $x \neq 0$
- Rank-deficient matrices must have at least one zero singular value
- Matrices are said to be deficient in numerical rank if they have extremely small singular values
- The solution to both linear systems (if it exists) and least squares is not unique, since we can add to it any multiple of x

Rank-deficient least squares problems seek a minimizer x of $||Ax - b||_2$ of minimal norm $||x||_2$

- If A is a diagonal matrix (with some zero diagonal entries), the best we can do is $x_i = b_i/a_{ii}$ for all i such that $a_{ii} \neq 0$ and $x_i = 0$ otherwise
- We can solve general rank-deficient systems and least squares problems via $x = A^\dagger b$ where the pseudoinverse is

$$A^\dagger = V\Sigma^\dagger U^T, \quad \sigma_i^\dagger = \begin{cases} 1/\sigma_i & : \sigma_i > 0 \\ 0 & : \sigma_i = 0 \end{cases}$$
Truncated SVD

- After floating-point rounding, rank-deficient matrices typically regain full-rank but have nonzero singular values on the order of $\epsilon_{\text{mach}}\sigma_{\text{max}}$
 - Very small singular values can cause large fluctuations in the solution
 - To ignore them, we can use a pseudoinverse based on the truncated SVD which retains singular values above an appropriate threshold
 - Alternatively, we can use Tikhonov regularization, solving least squares problems of the form $\min_x ||Ax - b||_2^2 + \alpha ||x||^2$, which are equivalent to the augmented least squares problem

$$\begin{bmatrix} A \\ \sqrt{\alpha}I \end{bmatrix} x \simeq \begin{bmatrix} b \\ 0 \end{bmatrix}$$

- By the Eckart-Young-Mirsky theorem, truncated SVD also provides the best low-rank approximation of a matrix (in 2-norm and Frobenius norm)
 - The SVD provides a way to think of a matrix as a sum of outer-products $\sigma_i u_i v_i^T$ that are disjoint by orthogonality and the norm of which is σ_i
 - Keeping the r outer products with largest norm provides the best rank-r approximation

Demo: Image compression
QR with Column Pivoting

- QR with column pivoting provides a way to approximately solve rank-deficient least squares problems and compute the truncated SVD.
 - We seek a factorization of the form $QR = AP$ where P is a permutation matrix that permutes the columns of A.
 - For $n \times n$ matrix A of rank r, the bottom $r \times r$ block of R will be 0.
 - To solve least squares, we can solve the rank-deficient triangular system $Ry = Q^Tb$ then compute $x = Py$.

- A pivoted QR factorization can be used to compute a rank-r approximation.
 - To compute QR with column pivoting,
 1. pivot the column of largest norm to be the leading column,
 2. form and apply a Householder reflector H so that $HA = \begin{bmatrix} \alpha & b \\ 0 & B \end{bmatrix}$,
 3. proceed recursively (go back to step 1) to pivot the next column and factorize B.

- Computing the SVD of the first r columns of AP^T generally (but not always) gives the truncated SVD.
- Halting after r steps leads to a cost of $O(n^2r)$.