CS 450: Numerical Anlaysis¹ Linear Least Squares

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Linear Least Squares

Find $x^* = \operatorname{argmin}_{x \in \mathbb{R}^n} ||Ax - b||_2$ where $A \in \mathbb{R}^{m \times n}$: Since $m \ge n$, the minimizer generally does not attain a zero residual Ax - b. We can rewrite the optimization problem constraint via

$$oldsymbol{x}^\star = \operatorname*{argmin}_{oldsymbol{x} \in \mathbb{R}^n} ||oldsymbol{A} oldsymbol{x} - oldsymbol{b}||_2^2 = \operatorname*{argmin}_{oldsymbol{x} \in \mathbb{R}^n} \left[(oldsymbol{A} oldsymbol{x} - oldsymbol{b})^T (oldsymbol{A} oldsymbol{x} - oldsymbol{b})
ight]$$

- ▶ Given the SVD $A = U\Sigma V^T$ we have $x^* = V\Sigma^\dagger U^T b$, where Σ^\dagger contains the reciprocal of all nonzeros in Σ:
 - lacktriangle The minimizer satisfies $m{U} m{\Sigma} m{V}^T m{x}^\star \cong m{b}$ and consequently also satisfies

$$oldsymbol{\Sigma} oldsymbol{y}^\star \cong oldsymbol{d} \quad ext{where } oldsymbol{y}^\star = oldsymbol{V}^T oldsymbol{x}^\star ext{ and } oldsymbol{d} = oldsymbol{U}^T oldsymbol{b}.$$

The minimizer of the reduced problem is $\mathbf{y}^{\star} = \mathbf{\Sigma}^{\dagger} \mathbf{d}$, so $y_i = d_i/\sigma_i$ for $i \in \{1, \dots, n\}$ and $y_i = 0$ for $i \in \{n+1, \dots, m\}$.

Demo: Polynomial fitting via the normal equations

Conditioning of Linear Least Squares

- ► Consider fitting a line to a collection of points, then perturbing the points:
 - If our line closely fits all of the points, a small perturbation to the points will not change the ideal fit line (least squares solution) much. Note that, if a least squares solution has a very small residual, any other solution with a residual close to as small, should be close to parallel to this solution.
 - When the points are distributed erratically and do not admit a reasonable linear fit, then the least squares solution has a large residual, and totally different lines may exist with a residual nearly as small. For example, if the points are in a ball around the origin, any linear fit has the same residual. A tiny perturbation could then perturb the least squares solution to be perpendicular to the original.
- ightharpoonup LLS is ill-posed for any A, unless we consider solving for a particular b
 - ▶ If b is entirely outside the span of A then any perturbation to A or b can completely defines the new solution. Similarly, if most of b is outside the span of A, a perturbation can cause the solution to fluctuate wildly.
 - On other hand, if for a particular b we can find a solution with (near-)zero residual, a small relative perturbation to b or A will have an effect similar to that of a linear system perturbation (growth bounded by $\kappa(A) = \sigma_{max}/\sigma_{min}$).

Normal Equations

Normal equations are given by solving $A^TAx = A^Tb$:

If $oldsymbol{A}^Toldsymbol{A}oldsymbol{x} = oldsymbol{A}^Toldsymbol{b}$ then

$$egin{aligned} (oldsymbol{U}oldsymbol{\Sigma}oldsymbol{V}^Toldsymbol{U}oldsymbol{\Sigma}oldsymbol{V}^Toldsymbol{x} &= (oldsymbol{U}oldsymbol{\Sigma}oldsymbol{V}^Toldsymbol{x} &= oldsymbol{\Sigma}^Toldsymbol{U}^Toldsymbol{b} &= oldsymbol{\Sigma}^\daggeroldsymbol{U}^Toldsymbol{b} &= oldsymbol{\Sigma}^\daggeroldsymbol{U}^Toldsymbol{D} &= oldsymbol{\Sigma}^\daggeroldsymbol{U}^Toldsymbol{D} &= oldsymbol{\Sigma}^\daggeroldsymbol{U}^Toldsymbol{U}^Toldsymbol{U}^Toldsymbol{D} &= oldsymbol{\Sigma}^\daggeroldsymbol{U}^Toldsymbol{U}^Toldsymbol{D} &= oldsymbol{\Sigma}^\daggeroldsymbol{U}^Toldsymbol{U}^Toldsymbol{U}^Toldsymbol{U}^Toldsymbol{U} &= oldsymbol{\Sigma}^\daggeroldsymbol{U}^Toldsym$$

then the original least squares algorithm Generally we have $\kappa(A^TA) = \kappa(A)^2$ (the singular values of A^TA are the squares of those in A). Consequently, solving the least squares problem via the normal equations may be unstable because it involves solving a problem that has worse conditioning than the initial least squares problem.

However, solving the normal equations is a more ill-conditioned problem

Solving the Normal Equations

- ▶ If A is full-rank, then A^TA is symmetric positive definite (SPD):
 - Symmetry is easy to check $(A^TA)^T = A^TA$.
 - A being full-rank implies $\sigma_{min} > 0$ and further if $A = U\Sigma V^T$ we have

$$\boldsymbol{A}^T\boldsymbol{A} = \boldsymbol{V}^T\boldsymbol{\Sigma}^2\boldsymbol{V}$$

which implies that rows of V are the eigenvectors of A^TA with eigenvalues Σ^2 since $A^TAV^T = V^T\Sigma^2$.

▶ Since A^TA is SPD we can use Cholesky factorization, to factorize it and solve linear systems:

$$\mathbf{A}^T \mathbf{A} = \mathbf{L} \mathbf{L}^T$$

OR Factorization

- ▶ If A is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix R with a positive diagonal such that A = QR
 - $lackbox{igspace}{oxed{oldsymbol{C}}}$ Given $oldsymbol{A}^Toldsymbol{A} = oldsymbol{L}L^T$, we can take $oldsymbol{R} = oldsymbol{L}^T$ and obtain $oldsymbol{Q} = oldsymbol{A}L^{-T}$, since $oldsymbol{L}^{-1}oldsymbol{A}^Toldsymbol{A}L^{-T} = oldsymbol{I}$ implies that $oldsymbol{Q}$ has orthonormal columns.
- A reduced QR factorization (unique part of general QR) is defined so that $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns and R is square and upper-triangular A full QR factorization gives $Q \in \mathbb{R}^{m \times m}$ and $R \in \mathbb{R}^{m \times n}$, but since R is upper triangular, the latter m-n columns of Q are only constrained so as to keep Q orthogonal. The reduced QR factorization is given by taking the first n columns Q and \hat{Q} the upper-triangular block of R, \hat{R} giving $A = \hat{Q}\hat{R}$.
- We can solve the normal equations (and consequently the linear least squares problem) via reduced QR as follows

$$m{A}^T m{A} m{x} = m{A}^T m{b} \quad \Rightarrow \quad \hat{m{R}}^T \hat{m{Q}}^T \hat{m{Q}} \hat{m{R}} m{x} = \hat{m{R}}^T \hat{m{Q}}^T m{b} \quad \Rightarrow \quad \hat{m{R}} m{x} = \hat{m{Q}}^T m{b}$$

Gram-Schmidt Orthogonalization

Classical Gram-Schmidt process for QR:

The Gram-Schmidt process orthogonalizes a rectangular matrix, i.e. it finds a set of orthonormal vectors with the same span as the columns of the given matrix. If a_i is the *i*th column of the input matrix, the *i*th orthonormal vector (ith column of Q) is

$$m{q}_i = m{b}_i / arprojlim_{r_{ii}} m{b}_i = m{a}_i - \sum_{j=1}^{i-1} arprojlim_{r_{ji}} m{q}_j.$$

Modified Gram-Schmidt process for QR:

Better numerical stability is achieved by orthogonalizing each vector with respect to each previous vector in sequence (modifying the vector prior to orthogonalizing to the next vector), so $\mathbf{b}_i = \mathsf{MGS}(\mathbf{a}_i, i-1)$, where $\mathsf{MGS}(\mathbf{d}, 0) = \mathbf{d}$ and

$$MGS(d, j) = MGS(d - \langle q_j, d \rangle q_j, j - 1)$$

Householder QR Factorization

- ▶ A Householder transformation $Q = I 2uu^T$ is an orthogonal matrix defined to annihilate entries of a given vector z, so $||z||_2 Qe_1 = z$:
 - ► Householder QR achieves unconditional stability, by applying only orthogonal transformations to reduce the matrix to upper-triangular form.
 - lacktriangle Householder transformations (reflectors) are orthogonal matrices, that reduce a vector to a multiple of the first elementary vector, $lpha e_1 = Qz$.
 - ▶ Because multiplying a vector by an orthogonal matrix preserves its norm, we must have that $|\alpha| = ||z||_2$.
 - As we will see, this transformation can be achieved by a rank-1 perturbation of identify of the form $Q = I 2uu^T$ where u is a normalized vector.
 - $lackbox{ iny Householder matrices are both symmetric and orthogonal implying that } oldsymbol{Q} = oldsymbol{Q}^T = oldsymbol{Q}^{-1}.$
- lacktriangle Imposing this form on Q leaves exactly two choices for u given z,

$$m{u} = rac{m{z} \pm ||m{z}||_2 m{e}_1}{||m{z} \pm ||m{z}||_2 m{e}_1||_2}$$

Applying Householder Transformations

▶ The product x = Qw can be computed using O(n) operations if Q is a Householder transformation

$$\boldsymbol{x} = (\boldsymbol{I} - 2\boldsymbol{u}\boldsymbol{u}^T)\boldsymbol{w} = \boldsymbol{w} - 2\langle \boldsymbol{u}, \boldsymbol{w} \rangle \boldsymbol{u}$$

- Householder transformations are also called *reflectors* because their application reflects a vector along a hyperplane (changes sign of component of w that is parallel to u)
 Translation reflects a vector along a hyperplane (changes sign of component of w that is parallel to u)
 - $lackbox{I} uu^T$ would be an elementary projector, since $\langle u,w
 angle u$ gives component of w pointing in the direction of u and

$$oldsymbol{x} = (oldsymbol{I} - oldsymbol{u} oldsymbol{u}^T) oldsymbol{w} = oldsymbol{w} - \langle oldsymbol{u}, oldsymbol{w}
angle oldsymbol{u}$$
 subtracts it out.

On the other hand, Householder reflectors give

$$oldsymbol{y} = (oldsymbol{I} - 2oldsymbol{u} oldsymbol{u}^T) oldsymbol{w} = oldsymbol{w} - 2\langle oldsymbol{u}, oldsymbol{w}
angle oldsymbol{u} = oldsymbol{x} - \langle oldsymbol{u}, oldsymbol{w}
angle oldsymbol{u}$$

which reverses the sign of that component, so that $||m{y}||_2 = ||m{w}||_2$.

Givens Rotations

- ▶ Householder reflectors reflect vectors, Givens rotations rotate them
 - ightharpoonup Householder matrices reflect vectors across a hyperplane, by negating the sign of the vector component that is perpendicular to the hyperplane (parallel to u)
 - Any vector can be reflected to a multiple of an elementary vector by a single Householder rotation (in fact, there are two rotations, resulting in a different sign of the resulting vector)
 - Givens rotations instead rotate vectors by an axis of rotation that is perpendicular to a hyperplane spanned by two elementary vectors
 - Consequently, each Givens rotation can be used to zero-out (annihilate) one entry of a vector, by rotating it so that the component of the vector pointing in the direction of the axis corresponding to that entry, points into a different axis
- lacktriangle Givens rotations are defined by orthogonal matrices of the form $egin{bmatrix} c & s \ -s & c \end{bmatrix}$
 - ▶ Given a vector $\begin{bmatrix} a \\ b \end{bmatrix}$ we define c and s so that $\begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sqrt{a^2 + b^2} \\ 0 \end{bmatrix}$
 - ► Solving for c and s, we get $c = \frac{a}{\sqrt{a^2+b^2}}$, $s = \frac{b}{\sqrt{a^2+b^2}}$

OR via Givens Rotations

► We can apply a Givens rotation to a pair of matrix rows, to eliminate the first nonzero entry of the second row

$$\begin{bmatrix} \boldsymbol{I} & & & & \\ & c & & s \\ & & \boldsymbol{I} & \\ & -s & & c & \\ & & & & \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \vdots \\ a \\ \vdots \\ b \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ \sqrt{a^2 + b^2} \\ \vdots \\ 0 \\ \vdots \end{bmatrix}$$

- ▶ Thus, n(n-1)/2 Givens rotations are needed for QR of a square matrix
 - \blacktriangleright Each rotation modifies two rows, which has cost O(n)
 - ightharpoonup Overall, Givens rotations cost $2n^3$, while Householder QR has cost $(4/3)n^3$
 - ► Givens rotations provide a convenient way of thinking about QR for sparse matrices, since nonzeros can be successively annihilated, although they introduce the same amount of fill (new nonzeros) as Householder reflectors

Rank-Deficient Least Squares

- ► Suppose we want to solve a linear system or least squares problem with a (nearly) rank deficient matrix *A*
 - lacktriangle A rank-deficient (singular) matrix satisfies Ax=0 for some x
 eq 0
 - ▶ Rank-deficient matrices must have at least one zero singular value
 - Matrices are said to be deficient in numerical rank if they have extremely small singular values
 - The solution to both linear systems (if it exists) and least squares is not unique, since we can add to it any multiple of \boldsymbol{x}
- Rank-deficient least squares problems seek a minimizer x of $||Ax b||_2$ of minimal norm $||x||_2$
 - ▶ If A is a diagonal matrix (with some zero diagonal entries), the best we can do is $x_i = b_i/a_{ii}$ for all i such that $a_{ii} \neq 0$ and $x_i = 0$ otherwise
 - lacktriangledown We can solve general rank-deficient systems and least squares problems via $x=A^\dagger b$ where the pseudoinverse is

$$oldsymbol{A}^\dagger = oldsymbol{V} oldsymbol{\Sigma}^\dagger oldsymbol{U}^T \quad \sigma_i^\dagger = egin{cases} 1/\sigma_i &: \sigma_i > 0 \ 0 &: \sigma_i = 0 \end{cases}$$

Truncated SVD

- After floating-point rounding, rank-deficient matrices typically regain full-rank but have nonzero singular values on the order of $\epsilon_{\mathsf{mach}}\sigma_{\mathsf{max}}$
 - Very small singular values can cause large fluctuations in the solution
 - To ignore them, we can use a pseudoinverse based on the truncated SVD which retains singular values above an appropriate threshold
 - ▶ Alternatively, we can use Tykhonov regularization, solving least squares problems of the form $\min_{\boldsymbol{x}} ||\boldsymbol{A}\boldsymbol{x} \boldsymbol{b}||_2^2 + \alpha ||\boldsymbol{x}||^2$, which are equivalent to the augmented least squares problem

$$egin{bmatrix} m{A} \ \sqrt{lpha}m{I} \end{bmatrix}m{x}\congegin{bmatrix} m{b} \ m{0} \end{bmatrix}$$

- ▶ By the *Eckart-Young-Mirsky theorem*, truncated SVD also provides the best low-rank approximation of a matrix (in 2-norm and Frobenius norm)
 - The SVD provides a way to think of a matrix as a sum of outer-products $\sigma_i u_i v_i^T$ that are disjoint by orthogonality and the norm of which is σ_i
 - Keeping the r outer products with largest norm provides the best rank-r approximation

QR with Column Pivoting

- QR with column pivoting provides a way to approximately solve rank-deficient least squares problems and compute the truncated SVD
 - **>** We seek a factorization of the form QR = AP where P is a permutation matrix that permutes the columns of A
 - For $n \times n$ matrix A of rank r, the bottom $r \times r$ block of R will be 0
 - lacktriangleright To solve least squares, we can solve the rank-deficient triangular system $m{R}m{y} = m{Q}^Tm{b}$ then compute $m{x} = m{P}m{y}$
- ightharpoonup A pivoted QR factorization can be used to compute a rank-r approximation
 - To compute QR with column pivoting,
 - 1. pivot the column of largest norm to be the leading column,
 - 2. form and apply a Householder reflector \mathbf{H} so that $\mathbf{H}\mathbf{A} = \begin{bmatrix} \alpha & \mathbf{b} \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$,
 - 3. proceed recursively (go back to step 1) to pivot the next column and factorize $oldsymbol{B}$
 - ▶ Computing the SVD of the first r columns of AP^T generally (but not always) gives the truncated SVD
 - ▶ Halting after r steps leads to a cost of $O(n^2r)$