CS 450: Numerical Analysis

Numerical Optimization

University of Illinois at Urbana-Champaign

1 These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).
Our focus will be on *continuous* rather than *combinatorial* optimization:

\[
\min_x f(x) \quad \text{subject to } g(x) = 0 \quad \text{and} \quad h(x) \leq 0
\]

where \(f \in \mathbb{R}^n \rightarrow \mathbb{R} \) is assumed to be differentiable.

- **Without the constraints, i.e. with** \(g = 0 \) and \(h = 0 \), **the problem is unconstrained**.
- **With constraints, the constrained optimization problem restricts the solution to elements of the feasible region**: \(\{x : g(x) = 0 \text{ and } h(x) \leq 0\} \).

We consider linear, quadratic, and general nonlinear optimization problems:

- If \(f, g, \) and \(h \) are affine (linear and constant terms only) then we have **linear programming problem**.
- If \(f \) is quadratic while \(g \) and \(h \) are linear, then we have a **quadratic programming problem**, for which specialized methods exist.
- Generally, we have a **nonlinear programming problem**.
Local Minima and Convexity

- Without knowledge of the analytical form of the function, numerical optimization methods at best achieve convergence to a *local* rather than *global* minimum:

 If the input domain is infinite or the global minimum is in an infinitesimally narrow trough, it may be impossible to find the global minimum in finite time.

- A set is *convex* if it includes all points on any line, while a function is (strictly) convex if its (unique) local minimum is always a global minimum:

 - **Set S is convex if**
 \[
 \forall x, y \in S, \quad \alpha \in [0, 1], \quad \alpha x + (1 - \alpha) y \in S.
 \]

 - **Function f is convex if**
 \[
 f(\alpha x + (1 - \alpha) y) \leq \alpha f(x) + (1 - \alpha) f(y).
 \]

 - A function may have a unique global minima but not be convex.
Existence of Local Minima

Level sets are all points for which \(f \) has a given value, sublevel sets are all points for which the value of \(f \) is less than a given value:

\[
L(z) = \{ x : f(x) = z \}
\]

\[
S(z) = \{ x : f(x) \leq z \}
\]

If there exists a closed and bounded sublevel set in the domain of feasible points, then \(f \) has has a global minimum in that set:

Need a value \(z \) such that \(S(z) \) has finite size, is contiguous, and includes its own boundary.
Optimality Conditions

- If x is an interior point in the feasible domain and is a local minima,

$$\nabla f(x) = \left[\frac{df}{dx_1}(x) \cdots \frac{df}{dx_n}(x) \right]^T = 0:$$

- If $\frac{df}{dx_i}(x) < 0$ an infinitesimal increment to x_i improves the solution,
- if $\frac{df}{dx_i}(x) > 0$ an infinitesimal decrement to x_i improves the solution.

- **Critical points** x satisfy $\nabla f(x) = 0$ and can be minima, maxima, or saddle points:

 *For scalar function f, can distinguish the three by considering sign of $f''(x)$.***
Hessian Matrix

To ascertain whether a critical point \(x \), for which \(\nabla f(x) = 0 \), is a local minima, consider the **Hessian matrix**:

\[
H_f(x) = J_{\nabla f}(x) = \begin{bmatrix}
\frac{d^2 f}{dx_1^2}(x) & \cdots & \frac{d^2 f}{dx_1 dx_n}(x) \\
\vdots & \ddots & \vdots \\
\frac{d^2 f}{dx_n dx_1}(x) & \cdots & \frac{d^2 f}{dx_n^2}(x)
\end{bmatrix}
\]

The Hessian matrix is always symmetric.

If \(x^* \) is a minima of \(f \), then \(H_f(x^*) \) is positive semi-definite:

If \(H_f(x^*) \) is not positive semi-definite, there exists normalized vector \(s \) such that \(s^T H_f(x^*) s < 0 \), which means that for a sufficiently small \(\alpha \), \(\hat{x} = x^* + \alpha s \) will have be a better solution, \(f(\hat{x}) < f(x^*) \), since the gradient is zero at \(x^* \) and decreases for an infinitesimal perturbation of \(x^* \) in the direction \(s \).
Optimality on Feasible Region Border

- Given an equality constraint $g(x) = 0$, it is no longer necessarily the case that $\nabla f(x^*) = 0$. Instead, it may be that directions in which the gradient decreases lead to points outside the feasible region:

 $$\exists \lambda \in \mathbb{R}^n, \quad -\nabla f(x^*) = J^T_g(x^*)\lambda$$

 - λ are referred to as the Lagrange multipliers.

 - This condition implies that at x^*, the direction in which f decreases is in the span of directions moving along which would exit the feasible region.

- Such **constrained minima** are critical points of the Lagrangian function $\mathcal{L}(x, \lambda) = f(x) + \lambda^T g(x)$, so they satisfy:

 $$\nabla \mathcal{L}(x^*, \lambda) = \begin{bmatrix} \nabla f(x^*) + J^T_g(x^*)\lambda \\ g(x^*) \end{bmatrix} = 0$$

 Seeking λ^* to obtain a function $k(x) = \mathcal{L}(x, \lambda^*)$ with maximum global minimum is the **dual optimization problem**.
Sensitivity and Conditioning

The condition number of solving a nonlinear equations is $1/f'(x^*)$, however for a minimizer x^*, we have $f'(x^*) = 0$, so conditioning of optimization is inherently bad:

Consider perturbation of function values for a function that changes slowly near the minimum.

To analyze worst case error, consider how far we have to move from a root x^* to perturb the function value by ϵ:

$$\epsilon = f(x^* + h) - f(x^*) = f'(x^*)h + \frac{1}{2}f''(x^*)h^2 + O(h^3)$$

so the function value changes by $\frac{1}{2}f''(x^*)h^2$, which implies we need $h = O(\sqrt{\epsilon})$, a perturbation to the function value in the kth significant digit, could result in the solution changing in the $k/2$th significant digit.
Golden Section Search

- Given bracket \([a, b]\) with a unique local minimum (\(f\) is unimodal on the interval), *golden section search* considers points \(f(x_1), f(x_2)\), \(a < x_1 < x_2 < b\) and discards subinterval \([a, x_1]\) or \([x_2, b]\):
 - If a function is strictly convex and bounded on \([a, b]\), it is unimodal on that interval, but a unimodal function may be non-convex.
 - Because the function is unimodal, if we have \(f(x_1) < f(x_2)\) then the unique local minima \(f\) in \([a, b]\) has to be in the interval \([a, x_2]\).
 - So, if \(f(x_1) < f(x_2)\) can restrict search to \([a, x_2]\) and otherwise to \([x_1, b]\).

- Since one point remains in the interval, golden section search selects \(x_1\) and \(x_2\) so one of them can be effectively reused in the next iteration:
 - For example, when \(f(x_1) > f(x_2)\), \(x_2\) is inside \([x_1, b]\) and we would like \(x_2\) to serve as the \(x_1\) for the next iteration.
 - To ensure this, and minimize resulting interval length, we pick \(x_2 = a + (b - a)(\sqrt{5} - 1)/2\) and \(x_1 = b - (b - a)(\sqrt{5} - 1)/2\).

- Consequently, the convergence of golden section search is linear with constant \((\sqrt{5} - 1)/2\) per function evaluation.
Newton’s Method for Optimization

At each iteration, approximate function by quadratic and find minimum of quadratic function:

Pick quadratic function \hat{f} as first three terms of Taylor expansion of f about x_k, matching value and first two derivatives of f at x_k.

The new approximate guess will be given by $x_{k+1} = x_k - f'(x_k)/f''(x_k)$:

$$f(x) \approx \hat{f}(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2} f''(x_k)(x - x_k)^2$$

since the function is quadratic, we can find its unique critical point to find its minima,

$$\hat{f}'(x_{k+1}) = f'(x_k) + f''(x_k)(x_{k+1} - x_k) = 0.$$
Successive Parabolic Interpolation

- Interpolate f with a quadratic function at each step and find its minima:
 Given three points, there is a unique quadratic function interpolating them.
- The convergence rate of the resulting method is roughly 1.324
 By comparison, the convergence of golden section search is linear with a constant of 0.618, while Newton’s method converges quadratically.
Safeguarded 1D Optimization

- Safeguarding can be done by bracketing via golden section search:
 Combination of Newton and golden section search
 - achieves quadratic convergence locally,
 - is guaranteed convergence provided unimodality of function.

- Backtracking and step-size control:
 - Can take smaller step \(x_{k+1} = x_k - \alpha_k \frac{f'(x_k)}{f''(x_k)} \) for some \(\alpha_k < 1 \).
 - Can backtrack and choose smaller \(\alpha_k \) if \(f(x_{k+1}) > f(x_k) \).
General Multidimensional Optimization

▶ Direct search methods by simplex (**Nelder-Mead**):

Form a \(n + 1 \)-point polytope in \(n \)-dimensional space and adjust worst point (highest function value) by moving it along a line passing through the centroid of the remaining points.

▶ Steepest descent: find the minimizer in the direction of the negative gradient:

\[
x_{k+1} = x_k - \alpha_k \nabla f(x_k)
\]

such that \(f(x_{k+1}) = \min_{\alpha_k} f(x_k - \alpha_k \nabla f(x_k)) \), i.e. perform a line search (solve 1D optimization problem) in the direction of the negative gradient.
Convergence of Steepest Descent

- Steepest descent converges linearly with a constant that can be arbitrarily close to 1:
 - Convergence is slow locally, in the worst case, and generally depends on the Hessian near the minima.
 - If the gradient is changing quickly, it serves as good approximation only within a small local neighborhood, so the line search may result in arbitrarily small steps.

- Given quadratic optimization problem $f(x) = \frac{1}{2} x^T A x + c^T x$ where A is symmetric positive definite, the error $e_k = x_k - x^*$ satisfies

$$
\|e_{k+1}\|_A = e_{k+1}^T A e_{k+1} = \frac{\sigma_{\text{max}}(A) - \sigma_{\text{min}}(A)}{\sigma_{\text{max}}(A) + \sigma_{\text{min}}(A)} \|e_k\|_A
$$

- When sufficiently close to a local minima, general nonlinear optimization problems are described by such an SPD quadratic problem.
- Convergence rate depends on the conditioning of A, since

$$
\frac{\sigma_{\text{max}}(A) - \sigma_{\text{min}}(A)}{\sigma_{\text{max}}(A) + \sigma_{\text{min}}(A)} = \frac{\kappa(A) - 1}{\kappa(A) + 1}.
$$
Gradient Methods with Extrapolation

- We can improve the constant in the linear rate of convergence of steepest descent by leveraging extrapolation methods, which consider two previous iterates (maintain momentum in the direction $x_k - x_{k-1}$):

 $$x_{k+1} = x_k - \alpha_k \nabla f(x_k) + \beta_k (x_k - x_{k-1})$$

- The heavy ball method, which uses constant $\alpha_k = \alpha$ and $\beta_k = \beta$, achieves better convergence than steepest descent:

 $$||e_{k+1}||_A = \frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1} ||e_k||_A$$

 Nesterov’s gradient optimization method is another instance of an extrapolation method that provides further improved optimality guarantees.
The conjugate gradient method is capable of making the optimal choice of \(\alpha_k \) and \(\beta_k \) at each iteration of an extrapolation method:

\[
(\alpha_k, \beta_k) = \arg\min_{\alpha_k, \beta_k} \left[f\left(x_k - \alpha_k \nabla f(x_k) + \beta_k (x_k - x_{k-1}) \right) \right]
\]

For SPD quadratic programming problems, conjugate gradient is an optimal 1st order method, converging in \(n \) iterations.

It implicitly computes Lanczos iteration, searching along \(A \)-orthogonal directions at each step.

Parallel tangents implementation of the method proceeds as follows:

1. Perform a step of steepest descent to generate \(\hat{x}_k \) from \(x_k \).
2. Generate \(x_{k+1} \) by minimizing over the line passing through \(x_{k-1} \) and \(\hat{x}_k \).
Nonlinear Conjugate Gradient

Various formulations of conjugate gradient are possible for nonlinear objective functions, which differ in how they compute β below.

Fletcher-Reeves is among the most common, computes the following at each iteration:

1. Perform 1D minimization for α in $f(x_k + \alpha s_k)$
2. $x_{k+1} = x_k + \alpha s_k$
3. Compute gradient $g_{k+1} = \nabla f(x_{k+1})$
4. Compute $\beta = g_{k+1}^T g_{k+1} / (g_k^T g_{k+1})$
5. $s_{k+1} = -g_{k+1} + \beta s_k$
Conjugate Gradient for Quadratic Optimization

Conjugate gradient is an optimal iterative method for quadratic optimization,

\[f(x) = \frac{1}{2} x^T A x - b^T x \]

For such problems, it can be expressed in an efficient and succinct form, computing at each iteration:

1. \(\alpha = r_k^T r_k / s_k^T A s_k \)
2. \(x_{k+1} = x_k + \alpha s_k \)
3. Compute gradient \(r_{k+1} = r_k - \alpha_k A s_k \)
4. Compute \(\beta = r_{k+1}^T r_{k+1} / (r_k^T r_k) \)
5. \(s_{k+1} = r_{k+1} + \beta s_k \)

Note that for quadratic optimization, the negative gradient \(-g \) corresponds to the residual \(r = b - A x \)
Krylov Optimization

- Conjugate Gradient finds the minimizer of \(f(x) = \frac{1}{2}x^T Ax - b^T x \) within the Krylov subspace of \(A \):
 - It constructs Krylov subspace \(\mathcal{K}_k(A, b) = \text{span}(b, Ab, \ldots, A^{r-1}b) \).
 - At the \(k \)th step conjugate gradient yields iterate
 \[
 x_k = \|b\|_2 Q_k T_k^{-1} e_1,
 \]
 where \(Q_k \) are the Lanczos vectors associated with \(\mathcal{K}_k(A, b) \) and \(T_k = Q_k^T AQ_k \).
 - This choice of \(x_k \) minimizes \(f(x) \) since
 \[
 \min_{x \in \mathcal{K}_k(A, c)} f(x) = \min_{y \in \mathbb{R}^k} f(Q_k y) \\
 = \min_{y \in \mathbb{R}^k} y^T Q_k^T A Q_k y - b^T Q_k y \\
 = \min_{y \in \mathbb{R}^k} y^T T_k y - \|b\|_2 e_1^T y
 \]
 is minimized by \(y = \|b\|_2 T_k^{-1} e_1 \).

Demo: Conjugate Gradient Parallel Tangents as Krylov Subspace Method
Newton’s Method

Newton’s method in \(n \) dimensions is given by finding minima of \(n \)-dimensional quadratic approximation:

\[
f(x_k + s) \approx \hat{f}(s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T H_f(x_k) s.
\]

The minima of this function can be determined by identifying critical points

\[
0 = \nabla \hat{f}(s) = \nabla f(x_k) + H_f(x_k) s,
\]

thus to determine \(s \) we solve the linear system,

\[
H_f(x_k) s = -\nabla f(x_k).
\]

Assuming invertibility of the Hessian, we can write the Newton’s method iteration as

\[
x_{k+1} = x_k - H_f(x_k)^{-1} \nabla f(x_k).
\]

Quadratic convergence follows by equivalence to Newton’s method for solving nonlinear system of optimality equations \(\nabla f(x) = 0 \).
Quasi-Newton Methods

- **Quasi-Newton** methods compute approximations to the Hessian at each step:

\[x_{k+1} = x_k - \alpha_k B_k^{-1} \nabla f(x_k) \]

where \(\alpha_k \) is a line search parameter. Quasi-Newton methods can be more robust than Newton’s method, as the Newton’s method step can lead to a direction in which the objective function is strictly increasing.

- The **BFGS** method is a secant update method, similar to Broyden’s method:

 - At each iteration, perform a rank-2 update to \(B_k \) using \(s_k = x_{k+1} - x_k \) and \(y_k = \nabla f(x_{k+1}) - \nabla f(x_k) \):

 \[B_{k+1} = B_k + \frac{y_k y_k^T}{y_k^T s_k} - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} \]

 - Can update inverse with \(O(n^2) \) work, but its more stable and efficient to update a symmetric indefinite factorization.
 - The BFGS method also preserves symmetry of the Hessian approximation.
Nonlinear Least Squares

An important special case of multidimensional optimization is nonlinear least squares, the problem of fitting a nonlinear function \(f(x)(t) \) so that \(f_x(t_i) \approx y_i \):

For example, consider fitting \(f_{[x_1,x_2]}(t) = x_1 \sin(x_2 t) \) so that

\[
\begin{bmatrix}
f_{[x_1,x_2]}(1.5) \\
f_{[x_1,x_2]}(1.9) \\
f_{[x_1,x_2]}(3.2)
\end{bmatrix} \approx \begin{bmatrix}
-1.2 \\
4.5 \\
7.3
\end{bmatrix}.
\]

We can cast nonlinear least squares as an optimization problem and solve it by Newton’s method:

Define residual vector function \(r(x) \) so that \(r_i(x) = y_i - f_x(t_i) \) and minimize

\[
\phi(x) = \frac{1}{2} \| r(x) \|_2^2 = \frac{1}{2} r(x)^T r(x).
\]

Now the gradient is \(\nabla \phi(x) = J_r^T(x) r(x) \) and the Hessian is

\[
H_{\phi}(x) = J_r^T(x) J_r(x) + \sum_{i=1}^m r_i(x) H_{r_i}(x).
\]
Gauss-Newton Method

The Hessian for nonlinear least squares problems has the form:

\[
H_\phi(x) = J_r(x)^T J_r(x) + \sum_{i=1}^{m} r_i(x) H_{r_i}(x).
\]

The second term is small when the residual function \(r(x) \) is small, so approximate

\[
H_\phi(x) \approx \hat{H}_\phi(x) = J_r(x)^T J_r(x).
\]

The Gauss-Newton method is Newton iteration with an approximate Hessian:

\[
x_{k+1} = x_k - \hat{H}_\phi(x_k)^{-1} \nabla \phi(x_k) = x_k - (J_r(x_k)^T J_r(x_k))^{-1} J_r(x_k)^T J_r(x_k) r(x_k).
\]

Recognizing the normal equations, we interpret the Gauss-Newton method as solving linear least squares problems \(J_r(x_k) s_k \cong r(x_k) \), \(x_{k+1} = x_k + s_k \).

The Levenberg-Marquardt method incorporates Tykhonov regularization into the linear least squares problems within the Gauss-Newton method.
Constrained Optimization Problems

We now return to the general case of constrained optimization problems:

\[
\min_x f(x) \quad \text{subject to} \quad g(x) = 0 \quad \text{and} \quad h(x) \leq 0
\]

When \(f \) is quadratic, while \(h, g \) is linear, this is a quadratic optimization problem.

Generally, we will seek to reduce constrained optimization problems to a series of unconstrained optimization problems:

- **sequential quadratic programming**: solve an unconstrained quadratic optimization problem at each iteration,
- **penalty-based methods**: solve a series of more complicated (more ill-conditioned) unconstrained optimization problems,
- **active set methods**: define sequence of optimization problems with inequality constrains ignored or treated as equality constraints.
Sequential Quadratic Programming

- **Sequential quadratic programming** (SQP) corresponds to using Newton’s method to solve the equality constrained optimality conditions, by finding critical points of the Lagrangian function $\mathcal{L}(x, \lambda) = f(x) + \lambda^T g(x)$,

\[
\nabla \mathcal{L}(x, \lambda) = \begin{bmatrix} \nabla f(x) + J_g(x)\lambda \\ g(x) \end{bmatrix} = 0
\]

- At each iteration, SQP computes $[x_{k+1} \lambda_{k+1}] = [x_k \lambda_k] + [s_k \delta_k]$ by solving

\[
H_{\mathcal{L}}(x_k, \lambda_k) \begin{bmatrix} s_k \\ \delta_k \end{bmatrix} = -\nabla \mathcal{L}(x_k, \lambda_k)
\]

where

\[
H_{\mathcal{L}}(x_k, \lambda_k) = \begin{bmatrix} B(x_k, \lambda_k) & J_g(x_k) \\ J_g(x_k) & 0 \end{bmatrix}
\]

with $B(x, \lambda) = H_f(x) + \sum_{i=1}^{m} \lambda_i H_{g_i}(x)$
Inequality Constrained Optimality Conditions

- The Karush-Kuhn-Tucker (KKT) conditions hold for local minima of a problem with equality and inequality constraints, the key conditions are:
 - First, any minima \(x^* \) must be a feasible point, so \(g(x^*) = 0 \) and \(h(x^*) \leq 0 \).
 - We say the \(i \)th inequality constraint is active at a minima \(x^* \) if \(h_i(x^*) = 0 \).
 - The collection of equality constraints and active inequality constraints \(q^* \), satisfies \(q^*(x^*) = 0 \).
 - The negative gradient of the objective function at the minima must be in the row span of the Jacobian of this collection of constraints:
 \[
 -\nabla f(x^*) = J_{q^*}(x^*)\lambda^* \quad \text{where} \quad \lambda^* \quad \text{are Lagrange multipliers of constraints in} \ q^*.
 \]
- To use SQP for an inequality constrained optimization problem, consider at each iteration an active set of constraints:
 - Active set \(q_k \) contains all equality constraints and all inequality constraints that are exactly satisfied or violated at \(x_k \).
 - Perform one step of Newton’s method to minimize \(L_k(x, \lambda) = f(x) + \lambda^T q_k(x) \) with respect to \(x \) and \(\lambda \), then update active set.
Penalty Functions

- Alternatively, we can reduce constrained optimization problems to unconstrained ones by modifying the objective function. **Penalty** functions are effective for equality constraints $g(x) = 0$:

$$\phi_\rho(x) = f(x) + \frac{1}{2} \rho g(x)^T g(x)$$

is a simple merit function, and its solutions x^*_ρ satisfy $\lim_{\rho \to \infty} x^*_\rho = x^*$. However, the Hessian of ϕ_ρ becomes increasingly ill-conditioned for large ρ, leading to slow convergence.

- The augmented Lagrangian function provides a more numerically robust approach:

$$\mathcal{L}_\rho(x, \lambda) = f(x) + \lambda^T g(x) + \frac{1}{2} \rho g(x)^T g(x)$$
Barrier Functions

- **Barrier functions (interior point methods)** provide an effective way of working with inequality constraints $h(x) \leq 0$:
 - Provided we start at a feasible point, modify objective function so it diverges to ∞ when approaching border of feasible region.
 - **Inverse barrier function:**
 \[
 \phi_{\mu}(x) = f(x) - \mu \sum_{i=1}^{m} \frac{1}{h_i(x)}.
 \]
 - **Logarithmic barrier function:**
 \[
 \phi_{\mu}(x) = f(x) - \mu \sum_{i=1}^{m} \log(-h_i(x)).
 \]
 - When using sufficiently small steps, we have $x_{\mu}^* \to x^*$ as $\mu \to 0$.
