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http://heath.cs.illinois.edu/scicomp/notes/index.html

Interpolation

» Given (t1,y1),. .., (tm,ym) With nodes t; < --- < t,, an interpolant f satisfies:

f(ti) =y Vi

» The number of possible interpolant functions is infinite, but there is a unique
degree m — 1 polynomial interpolant.

» Error of interpolant can be quantified with knowledge of true function g, (e.g. by
considering max;et, +,,] | f(t) — g()|) -

» Interpolant is usually constructed as linear combinations of basis functions
{1 =1, SO f(t) =32, 259,(t).
» Interpolant exists if n > m and is unique for a given basis if n = m.
» Vandermonde matrix A =V (¢,{¢;}}_,) satisfies a;; = ¢;(t;) S0 Az = y.

» Coefficients x of interpolant are obtained by solving Vandermonde system
Ax =y for x.



Activity: Interpolation in Monomial Basis

Polynomial Interpolation

» The choice of monomials as basis functions, ¢;(t) = t/~! yields a degree
n — 1 polynomial interpolant:

> Corresponding Vandermonde matrix A = V (¢, {t/~'}"_,) satisfies a;; =t .
» Polynomial interpolants are easy to evaluate and do calculus on:
» Horner’s rule requires n products and n — 1 additions:
f@)=a1 +t(za+t(zs+...)).

> O(n) work to determine new coefficients for differentiation and integration.


https://relate.cs.illinois.edu/course/cs450-s21/flow/inclass-interpolation-monomial/start/

Conditioning of Interpolation

Demo: Monomial interpolation

» Conditioning of interpolation matrix A depends on basis functions and
coordinates t1,...,ty:

>

>

t; defines the ith row, so columns tend to be nearly linearly-dependent if

ti = i1

¢; defines the jth column, so rows tend to be nearly linearly-dependent if ¢; is
nearly in the span of the other basis functions: span({qﬁi}?:l’#j)

» The Vandermonde matrix tends to be ill-conditioned:

>

Monomials of increasing degree increasingly resemble one-another, so rows of
A become nearly the same, and consequently x(A) grows.

The conditioning can be improved somewhat by shifting and scaling points so
that each t; € [-1,1].

Consequently, we will consider alternative polynomial bases, seeking to improve
the efficiency and conditioning associated with the Vandermonde matrix.

However, generally, we will obtain the same polynomial interpolant. To improve
interpolant quality (e.g. avoid oscillations), the nodes and not the basis
functions need to be changed.


https://relate.cs.illinois.edu/course/cs450-s21/f/demos/upload/07-interpolation/Monomial interpolation.html

Lagrange Basis

» n-points fully define the unique (n — 1)-degree polynomial interpolant in the
Lagrange basis:

n n
;(t) = t—t)/ ] 5 —t)
k=1,k#j k=1,k#j
num den

» Note that den is never 0,
» num is 0 whenever t = t;, for some k, so ¢;(t;) = 0if i # j,
> whent = t; then num and den are the same, so ¢,(t;) = 1,
> consequently, the Lagrange Vandermonde matrix V (t,{¢, ;?:1) =1
» Lagrange polynomials yield an ideal Vandermonde system, but the basis
functions are hard to evaluate and do calculus on:
» Evaluation requires O(n?) work naively and may incur cancellation error.

» Differentiation and integration are also harder than with monomials.



Newton Basis

> The Newton basis functions ¢;(t) = [[2_} (t — t) with ¢;(t) = 1 seek the best
of monomial and Lagrange bases:

» Evaluation with Newton basis can use recurrence,
0;(t) = ¢j—1(t)(t — t;).
» Divided difference recurrence enables fast computation of coefficients.
» The Newton basis yields a triangular Vandermonde system:

> Note that a;; = ¢;(t;) = 0 forall i < j, so A is lower-triangular.
> Given A, can use back-substitution to obtain the solution in O(n?) work.

> Can use evaluation recurrence to compute A with O(n?) work, but divided
difference recurrence is more stable than forming A.



Orthogonal Polynomials

» Recall that good conditioning for interpolation is achieved by constructing a
well-conditioned Vandermonde matrix, which is the case when the columns
(corresponding to each basis function) are orthonormal. To construct robust
basis sets, we introduce a notion of orthonormal functions:

» To compute overlap between basis functions, use a w-weighted integral as inner
product,

0, Q)w = /_OO p(t)q(t)w(t)dt.

> {¢;}7, are orthonormal with respect to the above inner product if

1 ifi=j
0 otherwise

<¢i7¢j>w = §ij = {

» The corresponding norm is given by || f|| = \/{f, )w-



Demo: Orthogonal Polynomials

Legendre Polynomials
» The Gram-Schmidt orthogonalization procedure can be used to obtain an
orthonormal basis with the same span as any given arbitrary basis:

Given orthonormal functions {(;Aﬁi f;ll obtain kth function from ¢y, via

k—1
~ t ~ ~
a0 = T ) = (0 - S enl0). G0t
i=1
» The Legendre polynomials are obtained by Gram-Schmidt on the monomial
1:-1<t<1 N
basis, with w(t) = - t__ and normalized so ¢;(1) = 1.
0 : otherwise

For example, {6;(t)}3_, = {1,t, (3t> — 1)/2} since

1
Yi(t) =1, wz(t)zt—;/ltdt:t

1 1 1
¢3(t):t2—/ t2dt—t/ t3dt =t* —1/3

2/ —1


https://relate.cs.illinois.edu/course/cs450-s21/f/demos/upload/07-interpolation/Orthogonal Polynomials.html

Demo: Chebyshev interpolation

Che bys hev Basis Activity: Chebyshev Interpolation

» Chebyshev po/ynomials ¢j(t) = cos((j — 1) arccos(t)) and Chebyshev nodes

t; = cos (217) provide a way to pick nodes t1,.. . ,t, along with a basis, to

yield perfect conditioning:
> They satisfy the recurrence ¢1(t) = 1, ¢2(t) = t, dir1(t) = 2td;(t) — i1 (t)
» The Chebyshev basis functions are orthonormal with respect to

w(t) = {1/0 _e)2 L oi<i<l

0 : otherwise
» The Chebyshev nodes ensure orthogonality of the columns of A, since

Zn: o1 (k) ; (tr) Zcos (H%_l)w> cos ((3—1)2(731@—1)0

k=1

is zero whenever j # | due to periodicity of the summands.


https://relate.cs.illinois.edu/course/cs450-s21/f/demos/upload/07-interpolation/Chebyshev interpolation.html
https://relate.cs.illinois.edu/course/cs450-s21/flow/inclass-chebyshev/start/

Demo: Jump with Chebyshev Nodes

Chebyshev Nodes Intuition

) 0 1

» Note equi-oscillation property, successive extrema of T, = ¢, have the same
magnitude but opposite sign.

» Set of kK Chebyshev nodes of are given by zeros of T}, and are abscissas of
points uniformly spaced on the unit circle.


https://relate.cs.illinois.edu/course/cs450-s21/f/demos/upload/07-interpolation/Jump with Chebyshev Nodes.html

Error in Interpolation
We show by induction that given degree n polynomial interpolant f of f the error

E(t) = f(t) — f(t) has n zeros ty,...,t, and there exist y1,...,y, SO

t wo Wp—1
E(t>:/tl /yl /n f(”“)(wn)dwn---dwg (1)
t
E(t)=E(t1) + | E'(wo)dwo (2)

t1
Now note that for each of n — 1 consecutive pairs t;, t;11 we have

tit1
E'(t)dt = E(ti1) — E(t:) =0

t;
and so there are n — 1 zeros z; € (t;,t;+1) such that E'(z;) = 0.
The inductive hypothesis on E' then gives

wo w1 Wn—1
E/(wo) = / / / D () - -~ duy (3)
z1 Y2 n

Substituting (3) into (2), we obtain (1) with y1 = z1.



Demo: Interpolation Error

Interpolation Error Bounds
» Consequently, polynomial interpolation satisfies the following error bound:

(n+1) n

i=1

[E@)] <

n!
Note that the Choice of Chebyshev nodes decreases this error bound at the
extrema, equalizing it with nodes that are in the middle of the interval.

> Letting h = t,, — t1 (often also achieve same for h as the node-spacing
ti+1 — t;), we obtain

MaXseity ity |f(n+1)(5)|

n!

[E()] <

K" = O(h") for t€ [ty t]

Suggests that higher-accuracy can be achieved by
» adding more nodes (however, high polynomial degree can lead to unwanted
oscillations)
» shrinking interpolation interval (suggests piecewise interpolation)


https://relate.cs.illinois.edu/course/cs450-s21/f/demos/upload/07-interpolation/Interpolation Error.html

Demo: Composite Gauss Interpolation Error

Piecewise Polynomial Interpolation
» The kth piece of the interpolant is typically chosen as polynomial on [t;,¢; 1]
» Typically low-degree polynomial pieces used, e.g. cubic.
» Degree of piecewise polynomial is the degree of its pieces.

» Continuity is automatic, differentiability can be enforced by ensuring derivative
of pieces is equal at knots (nodes at which pieces meet).

te [tl, tg] : f1 (t)
f(t) = : Vi€ 2,n—1], fii(t) = fi(ti) = v
te [tn_l,tn] : fn—l(t)

» Hermite interpolation ensures consecutive interpolant pieces have same
derivative at each knot t;:

» Hermite interpolation ensures differentiability of the interpolant
Vi€ [2,n 1], fi_1(t:) = fi(t:)

» Various further constraints can be placed on the interpolant if its degree is at
least 3, since otherwise the system is underdetermined.


https://relate.cs.illinois.edu/course/cs450-s21/f/demos/upload/07-interpolation/Composite Gauss Interpolation Error.html

Spline Interpolation
» Asplineis a (k — 1)-time differentiable piecewise polynomial of degree k:
Cubic splines are twice-differntiable (Hermite cubics may only be
once-differentiable)
> 2(n — 1) equations needed to interpolate data
» n — 2 to ensure continuity of derivative
» n — 2 to ensure continuity of second derivative for cubic splines
Overall there are 4(n — 1) coefficients in the interpolant.
> The resulting interpolant coefficients are again determined by an
appropriate generalized Vandermonde system:
A natural spline obtains 4(n — 1) constraints by forcing f"(t1) = f”(t,) = 0.
Given cubic pieces p(t) and q(t) and nodes t1,ts,t3 (where ts is a knot) the
generalized Vandermonde system for a two-piece cubic natural spline
consists of 8 equations with 8 unknowns:

p(t1) =y, p"(t1)=0
p(t2) =y, q(t2) =y, P(t2) =d (t2), p"(ta) =q"(t2)
q(t3) =y3, ¢"(t3) =0



B-Splines
B-splines provide an effective way of constructing splines from a basis:
» The basis functions can be defined recursively with respect to degree:

koo Ut oy _ J1 tiSt<tin
vilt) = tivk — ti 9i(t) = {0 otherwise
or (1) = o (e (8) + (1= of (D)SF T (1), f(1) =) cidf(2)

=1

» ¢! is a linear hat function that increases from 0 to 1 on [t;,¢;41] and
decreases from 1 to 0 on [t;y1, tita].

> qbf is positive on [t;, t;1x+1] and zero elsewhere.

» The B-spline basis spans all possible splines of degree k£ with nodes {t;}7,.

» The B-spline basis coefficients are determined by a Vandermonde system
that is lower-triangular and banded (has k subdiagonals), and need not
contain differentiability constraints, since f(t) is a sum of ¢¥s.
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