CS 450: Numerical Anlaysis¹ Interpolation

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Interpolation

• Given $(t_1, y_1), \ldots, (t_m, y_m)$ with nodes $t_1 < \cdots < t_m$ an interpolant f satisfies:

$$f(t_i) = y_i \quad \forall i.$$

- The number of possible interpolant functions is infinite, but there is a unique degree m-1 polynomial interpolant.
- Firror of interpolant can be quantified with knowledge of true function g, (e.g. by considering $\max_{t \in [t_1, t_m]} |f(t) g(t)|$).
- ▶ Interpolant is usually constructed as linear combinations of basis functions $\{\phi_j\}_{j=1}^n = \phi_1, \dots, \phi_n \text{ so } f(t) = \sum_j x_j \phi_j(t).$
 - Interpolant exists if $n \ge m$ and is unique for a given basis if n = m.
 - ightharpoonup Vandermonde matrix $A = V(t, \{\phi_j\}_{j=1}^n)$ satisfies $a_{ij} = \phi_j(t_i)$ so Ax = y.
 - Coefficients x of interpolant are obtained by solving Vandermonde system Ax = y for x.

Polynomial Interpolation

- ▶ The choice of *monomials* as basis functions, $\phi_j(t) = t^{j-1}$ yields a degree n-1 polynomial interpolant:
 - lacktriangle Corresponding Vandermonde matrix $m{A} = m{V}(t, \{t^{j-1}\}_{j=1}^n)$ satisfies $a_{ij} = t_i^{j-1}$.
- Polynomial interpolants are easy to evaluate and do calculus on:
 - ightharpoonup Horner's rule requires n products and n-1 additions:

$$f(t) = x_1 + t(x_2 + t(x_3 + \ldots)).$$

 $lackbox{}{
ho}$ O(n) work to determine new coefficients for differentiation and integration.

Conditioning of Interpolation

- ▶ Conditioning of interpolation matrix A depends on basis functions and coordinates t_1, \ldots, t_m :
 - lacktriangledown t_i defines the ith row, so columns tend to be nearly linearly-dependent if $t_ipprox t_{i+1}$
 - ϕ_j defines the jth column, so rows tend to be nearly linearly-dependent if ϕ_j is nearly in the span of the other basis functions: $span(\{\phi_i\}_{i=1}^n|_{i\neq j})$
- ▶ The Vandermonde matrix tends to be ill-conditioned:
 - Monomials of increasing degree increasingly resemble one-another, so rows of A become nearly the same, and consequently $\kappa(A)$ grows.
 - The conditioning can be improved somewhat by shifting and scaling points so that each $t_i \in [-1, 1]$.
 - Consequently, we will consider alternative polynomial bases, seeking to improve the efficiency and conditioning associated with the Vandermonde matrix.
 - However, generally, we will obtain the same polynomial interpolant. To improve interpolant quality (e.g. avoid oscillations), the nodes and not the basis functions need to be changed.

Lagrange Basis

▶ n-points fully define the unique (n-1)-degree polynomial interpolant in the Lagrange basis:

$$\phi_j(t) = \underbrace{\prod_{k=1, k \neq j}^n (t - t_k)}_{\text{num}} / \underbrace{\prod_{k=1, k \neq j}^n (t_j - t_k)}_{\text{den}}$$

- Note that **den** is never 0.
- **num** is 0 whenever $t = t_k$ for some k, so $\phi_i(t_i) = 0$ if $i \neq j$,
- when $t = t_i$ then **num** and **den** are the same, so $\phi_i(t_i) = 1$,
- lacktriangle consequently, the Lagrange Vandermonde matrix $m{V}(m{t},\{\phi_i\}_{i=1}^n)=m{I}.$
- Lagrange polynomials yield an ideal Vandermonde system, but the basis functions are hard to evaluate and do calculus on:
 - ightharpoonup Evaluation requires $O(n^2)$ work naively and may incur cancellation error.
 - Differentiation and integration are also harder than with monomials.

Newton Basis

- ▶ The *Newton basis* functions $\phi_j(t) = \prod_{k=1}^{j-1} (t-t_k)$ with $\phi_1(t) = 1$ seek the best of monomial and Lagrange bases:
 - Evaluation with Newton basis can use recurrence,

$$\phi_j(t) = \phi_{j-1}(t)(t - t_j).$$

- Divided difference recurrence enables fast computation of coefficients.
- The Newton basis yields a triangular Vandermonde system:
 - Note that $a_{ij} = \phi_j(t_i) = 0$ for all i < j, so A is lower-triangular.
 - ▶ Given A, can use back-substitution to obtain the solution in $O(n^2)$ work.
 - ▶ Can use evaluation recurrence to compute A with $O(n^2)$ work, but divided difference recurrence is more stable than forming A.

Orthogonal Polynomials

- Recall that good conditioning for interpolation is achieved by constructing a well-conditioned Vandermonde matrix, which is the case when the columns (corresponding to each basis function) are orthonormal. To construct robust basis sets, we introduce a notion of orthonormal functions:
 - ► To compute overlap between basis functions, use a w-weighted integral as inner product,

$$\langle p, q \rangle_w = \int_{-\infty}^{\infty} p(t)q(t)w(t)dt.$$

 $lackbox{ } \{\phi_i\}_{i=1}^n$ are orthonormal with respect to the above inner product if

$$\langle \phi_i, \phi_j \rangle_w = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

▶ The corresponding norm is given by $||f|| = \sqrt{\langle f, f \rangle_w}$.

Legendre Polynomials

► The Gram-Schmidt orthogonalization procedure can be used to obtain an orthonormal basis with the same span as any given arbitrary basis: Given orthonormal functions $\{\hat{\phi}_i\}_{i=1}^{k-1}$ obtain kth function from ϕ_k via

$$\hat{\phi}_k(t) = \frac{\psi_k(t)}{||\psi_k||}, \quad \psi_k(t) = \phi_k(t) - \sum_{i=1}^{k-1} \langle \phi_k(t), \hat{\phi}_i(t) \rangle_w \hat{\phi}_i(t)$$

The Legendre polynomials are obtained by Gram-Schmidt on the monomial basis, with $w(t) = \begin{cases} 1: -1 \leq t \leq 1 \\ 0: \text{ otherwise} \end{cases}$ and normalized so $\hat{\phi}_i(1) = 1$.

For example,
$$\{\hat{\phi}_i(t)\}_{i=1}^3=\{1,t,(3t^2-1)/2\}$$
 since
$$\psi_1(t)=1,\quad \psi_2(t)=t-\frac{1}{2}\int_{-1}^1tdt=t$$

$$\psi_3(t) = t^2 - \frac{1}{2} \int_{-1}^1 t^2 dt - t \int_{-1}^1 t^3 dt = t^2 - 1/3$$

Chebyshev Basis

- ► Chebyshev polynomials $\phi_j(t) = \cos((j-1)\arccos(t))$ and Chebyshev nodes $t_i = \cos\left(\frac{2i-1}{2n}\pi\right)$ provide a way to pick nodes t_1,\ldots,t_n along with a basis, to yield perfect conditioning:
 - They satisfy the recurrence $\phi_1(t) = 1$, $\phi_2(t) = t$, $\phi_{i+1}(t) = 2t\phi_i(t) \phi_{i-1}(t)$
 - The Chebyshev basis functions are orthonormal with respect to

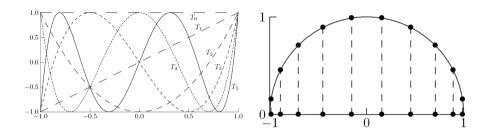
$$w(t) = \begin{cases} 1/(1-t^2)^{1/2} & : -1 \le t \le 1 \\ 0 & : \textit{otherwise} \end{cases}.$$

The Chebyshev nodes ensure orthogonality of the columns of A, since

$$\sum_{k=1}^{n} \phi_l(t_k)\phi_j(t_k) = \sum_{k=1}^{n} \cos\left(\frac{(l-1)(2k-1)}{2n}\pi\right) \cos\left(\frac{(j-1)(2k-1)}{2n}\pi\right)$$

is zero whenever $j \neq l$ due to periodicity of the summands.

Chebyshev Nodes Intuition



- Note equi-oscillation property, successive extrema of $T_k = \phi_k$ have the same magnitude but opposite sign.
- ▶ Set of k Chebyshev nodes of are given by zeros of T_k and are abscissas of points uniformly spaced on the unit circle.

Error in Interpolation

We show by induction that given degree n polynomial interpolant \tilde{f} of f the error $E(t) = f(t) - \tilde{f}(t)$ has n zeros t_1, \ldots, t_n and there exist y_1, \ldots, y_n so

$$E(t) = \int_{t_1}^t \int_{y_1}^{w_0} \cdots \int_{y_n}^{w_{n-1}} f^{(n+1)}(w_n) dw_n \cdots dw_0$$
 (1)

$$E(t) = E(t_1) + \int_{t_1}^{t} E'(w_0) dw_0$$
 (2)

Now note that for each of n-1 consecutive pairs t_i , t_{i+1} we have

$$\int_{t_{i}}^{t_{i+1}} E'(t)dt = E(t_{i+1}) - E(t_{i}) = 0$$

and so there are n-1 zeros $z_i \in (t_i, t_{i+1})$ such that $E'(z_i) = 0$. The inductive hypothesis on E' then gives

$$E'(w_0) = \int_{0}^{w_0} \int_{0}^{w_1} \cdots \int_{0}^{w_{n-1}} f^{(n+1)}(w_n) dw_n \cdots dw_1$$
 (3)

Substituting (3) into (2), we obtain (1) with $y_1 = z_1$.

Interpolation Error Bounds

Consequently, polynomial interpolation satisfies the following error bound:

$$|E(t)| \le \frac{\max_{s \in [t_1, t_n]} |f^{(n+1)}(s)|}{n!} \prod_{i=1}^n (t - t_i)$$
 for $t \in [t_1, t_n]$

Note that the Choice of Chebyshev nodes decreases this error bound at the extrema, equalizing it with nodes that are in the middle of the interval.

Letting $h = t_n - t_1$ (often also achieve same for h as the node-spacing $t_{i+1} - t_i$), we obtain

$$|E(t)| \le \frac{\max_{s \in [t_1, t_n]} |f^{(n+1)}(s)|}{n!} h^n = O(h^n) \quad \text{for} \quad t \in [t_1, t_n]$$

Suggests that higher-accuracy can be achieved by

- adding more nodes (however, high polynomial degree can lead to unwanted oscillations)
 - shrinking interpolation interval (suggests piecewise interpolation)

Piecewise Polynomial Interpolation

- lacktriangle The kth piece of the interpolant is typically chosen as polynomial on $[t_i,t_{i+1}]$
 - Typically low-degree polynomial pieces used, e.g. cubic.
 - ▶ Degree of piecewise polynomial is the degree of its pieces.
 - Continuity is automatic, differentiability can be enforced by ensuring derivative of pieces is equal at knots (nodes at which pieces meet).

$$f(t) = \begin{cases} t \in [t_1, t_2] & : f_1(t) \\ & \vdots & , \forall i \in [2, n-1], f_{i-1}(t_i) = f_i(t_i) = y_i \\ t \in [t_{n-1}, t_n] & : f_{n-1}(t) \end{cases}$$

- ► Hermite interpolation ensures consecutive interpolant pieces have same derivative at each knot t_i :
 - ► Hermite interpolation ensures differentiability of the interpolant $\forall i \in [2, n-1], f'_{i-1}(t_i) = f'_i(t_i)$
 - Various further constraints can be placed on the interpolant if its degree is at least 3, since otherwise the system is underdetermined.

Spline Interpolation

- A *spline* is a (k-1)-time differentiable piecewise polynomial of degree k: Cubic splines are twice-differntiable (Hermite cubics may only be once-differentiable)
 - \triangleright 2(n-1) equations needed to interpolate data
 - ightharpoonup n-2 to ensure continuity of derivative
 - ightharpoonup n-2 to ensure continuity of second derivative for cubic splines

Overall there are 4(n-1) coefficients in the interpolant.

► The resulting interpolant coefficients are again determined by an appropriate *generalized Vandermonde system*:

A natural spline obtains 4(n-1) constraints by forcing $f''(t_1) = f''(t_n) = 0$. Given cubic pieces p(t) and q(t) and nodes t_1, t_2, t_3 (where t_2 is a knot) the generalized Vandermonde system for a two-piece cubic natural spline consists of 8 equations with 8 unknowns:

$$p(t_1) = y_1, \quad p''(t_1) = 0$$

$$p(t_2) = y_2, \quad q(t_2) = y_2, \quad p'(t_2) = q'(t_2), \quad p''(t_2) = q''(t_2)$$

$$q(t_3) = y_3, \quad q''(t_3) = 0$$

B-Splines

B-splines provide an effective way of constructing splines from a basis:

▶ The basis functions can be defined recursively with respect to degree:

$$\begin{aligned} v_i^k(t) &= \frac{t - t_i}{t_{i+k} - t_i}, & \phi_i^0(t) &= \begin{cases} 1 & t_i \leq t \leq t_{i+1} \\ 0 & \textit{otherwise} \end{cases} \\ \phi_i^k(t) &= v_i^k(t)\phi_i^{k-1}(t) + (1 - v_{i+1}^k(t))\phi_{i+1}^{k-1}(t), & f(t) &= \sum_{i=1}^n c_i \phi_i^k(t) \end{aligned}$$

- $lacklosim \phi_i^1$ is a linear hat function that increases from 0 to 1 on $[t_i,t_{i+1}]$ and decreases from 1 to 0 on $[t_{i+1},t_{i+2}]$.
- $lackbox{} \phi_i^k$ is positive on $[t_i,t_{i+k+1}]$ and zero elsewhere.
- ▶ The B-spline basis spans all possible splines of degree k with nodes $\{t_i\}_{i=1}^n$.
- ▶ The B-spline basis coefficients are determined by a Vandermonde system that is lower-triangular and banded (has k subdiagonals), and need not contain differentiability constraints, since f(t) is a sum of ϕ_i^k s.