Numerical Integration and Differentiation

University of Illinois at Urbana-Champaign

1These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).
Integrability and Sensitivity

Seek to compute $\mathcal{I}(f) = \int_{a}^{b} f(x) \, dx$:

The condition number of integration is bounded by the distance $b - a$:
Quadrature Rules

- Approximate the integral $\mathcal{I}(f)$ by a weighted sum of function values:

- For a fixed set of n nodes, polynomial interpolation followed by integration give $(n - 1)$-degree quadrature rule:
Determining Weights in a General Basis

- A quadrature rule provides x and w so as to approximate

- Method of undetermined coefficients obtains y from moment equations based on Vandermonde system:
Newton-Cotes Quadrature

- **Newton-Cotes** quadrature rules are defined by equispaced nodes on \([a, b]\):

- The *midpoint rule* is the \(n = 1\) open Newton-Cotes rule:

- The *trapezoid rule* is the \(n = 2\) closed Newton-Cotes rule:

- *Simpson’s rule* is the \(n = 3\) closed Newton-Cotes rule:
Consider the Taylor expansion of f about the midpoint of the integration interval $m = (a + b)/2$:

Integrating the Taylor approximation of f, we note that the odd terms drop:
Error Estimation

- The trapezoid rule is also first degree, despite using higher-degree polynomial interpolant approximation, since

- The above derivation allows us to obtain an error approximation via a difference of midpoint and trapezoidal rules:
Error in Polynomial Quadrature Rules

- We can bound the error for an arbitrary polynomial quadrature rule by
Conditioning of Newton-Cotes Quadrature

- We can ascertain stability of quadrature rules, by considering the amplification of a perturbation $\hat{f} = f + \delta f$:

- Newton-Cotes quadrature rules have at least one negative weight for any $n \geq 11$:
To obtain a more stable quadrature rule, we need to ensure the integrated interpolant is well-behaved as n increases:
Gaussian Quadrature

So far, we have only considered quadrature rules based on a fixed set of nodes, but we may also be able to choose nodes to maximize accuracy:

The unique n-point Gaussian quadrature rule is defined by the solution of the nonlinear form of the moment equations in terms of both x and w:
Using Gaussian Quadrature Rules

- Gaussian quadrature rules are hard to compute, but can be enumerated for a fixed interval, e.g. \(a = 0, b = 1 \), so it suffices to transform the integral to \([0, 1]\).

- Gaussian quadrature rules are accurate and stable but not progressive (nodes cannot be reused to obtain higher-degree approximation):
Progressive Gaussian-like Quadrature Rules

- **Kronod** quadrature rules construct \((2n + 1)\)-point \((3n + 1)\)-degree quadrature \(K_{2n+1}\) that is progressive with respect to Gaussian quadrature rule \(G_n\):

- **Patterson** quadrature rules use \(2n + 2\) more points to extend \((2n + 1)\)-point Kronod rule to degree \(6n + 4\), while reusing all \(2n + 1\) points.

- Gaussian quadrature rules are in general open, but **Gauss-Radau** and **Gauss-Lobatto** rules permit including end-points:
Composite and Adaptive Quadrature

- Composite quadrature rules are obtained by integrating a piecewise interpolant of f:

- Composite quadrature can be done with adaptive refinement:
More Complicated Integration Problems

- To handle improper integrals can either transform integral to get rid of infinite limit or use appropriate open quadrature rules.

- Double integrals can simply be computed by successive 1-D integration.

- High-dimensional integration is often effectively done by *Monte Carlo*:
Integral Equations

- Rather than evaluating an integral, in solving an *integral equation* we seek to compute the integrand. A typical linear integral equation has the form

\[
\int_a^b K(s, t)u(t)\,dt = f(s), \quad \text{where} \quad K \quad \text{and} \quad f \quad \text{are known.}
\]

- Using a quadrature rule with weights \(w_1, \ldots, w_n\) and nodes \(t_1, \ldots, t_n\) obtain
Numerical Differentiation

- Automatic (symbolic) differentiation is a surprisingly viable option:

- Numerical differentiation can be done by interpolation or finite differencing:
Accuracy of Finite Differences

- *Forward and backward differencing* provide first-order accuracy:

- *Centered differencing* provides second-order accuracy.
Extrapolation Techniques

Given a series of approximate solutions produced by an iterative procedure, a more accurate approximation may be obtained by extrapolating this series.

In particular, given two guesses, Richardson extrapolation eliminates the leading order error term.
Given a series of k approximations, Romberg integration applies $(k - 1)$-levels of Richardson extrapolation.

Extrapolation can be used within an iterative procedure at each step: