CS 450: Numerical Anlaysis¹ Initial Value Problems for Ordinary Differential Equations

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Ordinary Differential Equations

An ordinary differential equation (ODE) usually describes time-varying system by a function y(t) that satisfies a set of equations in its derivatives.

▶ An ODE of any *order* k can be transformed into a first-order ODE,

Example: Newton's Second Law

• F = ma corresponds to a second order ODE,

> We can transform it into a first order ODE in two variables:

Initial Value Problems

Generally, a first order ODE specifies only the derivative, so the solutions are non-unique. An *initial condition* addresses this:

Given an initial condition, an ODE must satisfy an integral equation for any given point t:

Existence and Uniqueness of Solutions

For an ODE to have a unique solution, it must be defined on a closed domain D and be Lipschitz continuous:

▶ The solutions of an ODE can be stable, unstable, or asymptotically stable:

Stability of 1D ODEs

• The solution to the scalar ODE $y' = \lambda y$ is $y(t) = y_0 e^{\lambda t}$, with stability dependent on λ :

A constant-coefficient linear ODE has the form y' = Ay, with stability dependent on the real parts of the eigenvalues of A:

Demo: Forward Euler stability

Numerical Solutions to ODEs

• Methods for numerical ODEs seek to approximate y(t) at $\{t_k\}_{k=1}^m$.

Euler's method provides the simplest method (attempt) for obtaining a numerical solution:

Error in Numerical Methods for ODEs

Truncation error is typically the main quantity of interest, which can be defined *globally* or *locally*:

The order of accuracy of a given method is one less than than the order of the leading order term in the local error l_k:

Accuracy and Taylor Series Methods

b By taking a degree-r Taylor expansion of the ODE in t, at each consecutive (t_k, y_k) , we achieve rth order accuracy.

Taylor series methods require high-order derivatives at each step:

Growth Factors and Stability Regions

Stability of an ODE method discerns whether local errors are amplified, deamplified, or stay constant:

Basic stability properties follow from analysis of linear scalar ODE, which serves as a local approximation to more complex ODEs.

Stability Region for Forward Euler

 \blacktriangleright The stability region of a general ODE constrains the eigenvalues of hJ_f

Backward Euler Method

Demo: Backward Euler stability **Activity:** Backward Euler Method

Implicit methods for ODEs form a sequence of solutions that satisfy conditions on a local approximation to the solution:

The stability region of the backward Euler method is the left half of the complex plane:

Stiffness

Stiff ODEs are ones that contain components that vary at disparate time-scales:

Trapezoid Method

A second-order accurate implicit method is the trapezoid method

Generally, methods can be derived from quadrature rules:

Multi-Stage Methods

• Multi-stage methods construct y_{k+1} by approximating y between t_k and t_{k+1} :

The 4th order Runge-Kutta scheme is particularly popular: This scheme uses Simpson's rule,

$$\begin{aligned} y_{k+1} &= y_k + (h/6)(v_1 + 2v_2 + 2v_3 + v_4) \\ v_1 &= f(t_k, y_k), \\ v_3 &= f(t_k + h/2, y_k + (h/2)v_2), \end{aligned} v_2 &= f(t_k + h/2, y_k + (h/2)v_1), \\ v_4 &= f(t_k + h, y_k + hv_3). \end{aligned}$$

Demo: Dissipation in Runge-Kutta Methods

Runge-Kutta Methods

▶ Runge-Kutta methods evaluate f at $t_k + c_i h$ for $c_0, \ldots, c_r \in [0, 1]$,

A general family of Runge Kutta methods can be defined by

Multistep Methods

• Multistep methods employ $\{y_i\}_{i=0}^k$ to compute y_{k+1} :

Multistep methods are not self-starting, but have practical advantages: