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Optimization

Given function f : Rn → R, and set S ⊆ Rn, find x∗ ∈ S
such that f(x∗) ≤ f(x) for all x ∈ S

x∗ is called minimizer or minimum of f

It suffices to consider only minimization, since maximum of
f is minimum of −f

Objective function f is usually differentiable, and may be
linear or nonlinear

Constraint set S is defined by system of equations and
inequalities, which may be linear or nonlinear

Points x ∈ S are called feasible points

If S = Rn, problem is unconstrained
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Optimization Problems

General continuous optimization problem:

min f(x) subject to g(x) = 0 and h(x) ≤ 0

where f : Rn → R, g : Rn → Rm, h : Rn → Rp

Linear programming : f , g, and h are all linear

Nonlinear programming : at least one of f , g, and h is
nonlinear
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Examples: Optimization Problems

Minimize weight of structure subject to constraint on its
strength, or maximize its strength subject to constraint on
its weight

Minimize cost of diet subject to nutritional constraints

Minimize surface area of cylinder subject to constraint on
its volume:

min
x1,x2

f(x1, x2) = 2πx1(x1 + x2)

subject to g(x1, x2) = πx21x2 − V = 0

where x1 and x2 are radius and height of cylinder, and V is
required volume
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Local vs Global Optimization

x∗ ∈ S is global minimum if f(x∗) ≤ f(x) for all x ∈ S

x∗ ∈ S is local minimum if f(x∗) ≤ f(x) for all feasible x in
some neighborhood of x∗
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Global Optimization

Finding, or even verifying, global minimum is difficult, in
general

Most optimization methods are designed to find local
minimum, which may or may not be global minimum

If global minimum is desired, one can try several widely
separated starting points and see if all produce same
result

For some problems, such as linear programming, global
optimization is more tractable
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Existence of Minimum

If f is continuous on closed and bounded set S ⊆ Rn, then
f has global minimum on S

If S is not closed or is unbounded, then f may have no
local or global minimum on S

Continuous function f on unbounded set S ⊆ Rn is
coercive if

lim
‖x‖→∞

f(x) = +∞

i.e., f(x) must be large whenever ‖x‖ is large

If f is coercive on closed, unbounded set S ⊆ Rn, then f
has global minimum on S

Michael T. Heath Scientific Computing 8 / 74



Optimization Problems
One-Dimensional Optimization
Multi-Dimensional Optimization

Definitions
Existence and Uniqueness
Optimality Conditions

Level Sets

Level set for function f : S ⊆ Rn → R is set of all points in
S for which f has some given constant value

For given γ ∈ R, sublevel set is

Lγ = {x ∈ S : f(x) ≤ γ}

If continuous function f on S ⊆ Rn has nonempty sublevel
set that is closed and bounded, then f has global minimum
on S

If S is unbounded, then f is coercive on S if, and only if, all
of its sublevel sets are bounded
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Uniqueness of Minimum

Set S ⊆ Rn is convex if it contains line segment between
any two of its points

Function f : S ⊆ Rn → R is convex on convex set S if its
graph along any line segment in S lies on or below chord
connecting function values at endpoints of segment

Any local minimum of convex function f on convex set
S ⊆ Rn is global minimum of f on S

Any local minimum of strictly convex function f on convex
set S ⊆ Rn is unique global minimum of f on S
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First-Order Optimality Condition

For function of one variable, one can find extremum by
differentiating function and setting derivative to zero

Generalization to function of n variables is to find critical
point, i.e., solution of nonlinear system

∇f(x) = 0

where ∇f(x) is gradient vector of f , whose ith component
is ∂f(x)/∂xi

For continuously differentiable f : S ⊆ Rn → R, any interior
point x∗ of S at which f has local minimum must be critical
point of f

But not all critical points are minima: they can also be
maxima or saddle points
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Second-Order Optimality Condition

For twice continuously differentiable f : S ⊆ Rn → R, we
can distinguish among critical points by considering
Hessian matrix Hf (x) defined by

{Hf (x)}ij =
∂2f(x)

∂xi∂xj

which is symmetric

At critical point x∗, if Hf (x
∗) is

positive definite, then x∗ is minimum of f
negative definite, then x∗ is maximum of f
indefinite, then x∗ is saddle point of f
singular, then various pathological situations are possible
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Constrained Optimality
If problem is constrained, only feasible directions are
relevant

For equality-constrained problem

min f(x) subject to g(x) = 0

where f : Rn → R and g : Rn → Rm, with m ≤ n, necessary
condition for feasible point x∗ to be solution is that negative
gradient of f lie in space spanned by constraint normals,

−∇f(x∗) = JTg (x∗)λ

where Jg is Jacobian matrix of g, and λ is vector of
Lagrange multipliers

This condition says we cannot reduce objective function
without violating constraints
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Constrained Optimality, continued

Lagrangian function L : Rn+m → R, is defined by

L(x,λ) = f(x) + λTg(x)

Its gradient is given by

∇L(x,λ) =
[
∇f(x) + JTg (x)λ

g(x)

]
Its Hessian is given by

HL(x,λ) =

[
B(x,λ) JTg (x)

Jg(x) O

]
where

B(x,λ) =Hf (x) +

m∑
i=1

λiHgi(x)
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Constrained Optimality, continued

Together, necessary condition and feasibility imply critical
point of Lagrangian function,

∇L(x,λ) =
[
∇f(x) + JTg (x)λ

g(x)

]
= 0

Hessian of Lagrangian is symmetric, but not positive
definite, so critical point of L is saddle point rather than
minimum or maximum

Critical point (x∗,λ∗) of L is constrained minimum of f if
B(x∗,λ∗) is positive definite on null space of Jg(x∗)

If columns of Z form basis for null space, then test
projected Hessian ZTBZ for positive definiteness
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Constrained Optimality, continued

If inequalities are present, then KKT optimality conditions
also require nonnegativity of Lagrange multipliers
corresponding to inequalities, and complementarity
condition
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Sensitivity and Conditioning

Function minimization and equation solving are closely
related problems, but their sensitivities differ

In one dimension, absolute condition number of root x∗ of
equation f(x) = 0 is 1/|f ′(x∗)|, so if |f(x̂)| ≤ ε, then
|x̂− x∗| may be as large as ε/|f ′(x∗)|

For minimizing f , Taylor series expansion

f(x̂) = f(x∗ + h)

= f(x∗) + f ′(x∗)h+ 1
2 f
′′(x∗)h2 +O(h3)

shows that, since f ′(x∗) = 0, if |f(x̂)− f(x∗)| ≤ ε, then
|x̂− x∗| may be as large as

√
2ε/|f ′′(x∗)|

Thus, based on function values alone, minima can be
computed to only about half precision
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Unimodality

For minimizing function of one variable, we need “bracket”
for solution analogous to sign change for nonlinear
equation

Real-valued function f is unimodal on interval [a, b] if there
is unique x∗ ∈ [a, b] such that f(x∗) is minimum of f on
[a, b], and f is strictly decreasing for x ≤ x∗, strictly
increasing for x∗ ≤ x

Unimodality enables discarding portions of interval based
on sample function values, analogous to interval bisection
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Golden Section Search

Suppose f is unimodal on [a, b], and let x1 and x2 be two
points within [a, b], with x1 < x2

Evaluating and comparing f(x1) and f(x2), we can discard
either (x2, b] or [a, x1), with minimum known to lie in
remaining subinterval

To repeat process, we need compute only one new
function evaluation

To reduce length of interval by fixed fraction at each
iteration, each new pair of points must have same
relationship with respect to new interval that previous pair
had with respect to previous interval
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Golden Section Search, continued

To accomplish this, we choose relative positions of two
points as τ and 1− τ , where τ2 = 1− τ , so
τ = (

√
5− 1)/2 ≈ 0.618 and 1− τ ≈ 0.382

Whichever subinterval is retained, its length will be τ
relative to previous interval, and interior point retained will
be at position either τ or 1− τ relative to new interval

To continue iteration, we need to compute only one new
function value, at complementary point

This choice of sample points is called golden section
search

Golden section search is safe but convergence rate is only
linear, with constant C ≈ 0.618
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Golden Section Search, continued
τ = (

√
5− 1)/2

x1 = a+ (1− τ)(b− a); f1 = f(x1)
x2 = a+ τ(b− a); f2 = f(x2)
while ((b− a) > tol) do

if (f1 > f2) then
a = x1
x1 = x2
f1 = f2
x2 = a+ τ(b− a)
f2 = f(x2)

else
b = x2
x2 = x1
f2 = f1
x1 = a+ (1− τ)(b− a)
f1 = f(x1)

end
end
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Example: Golden Section Search

Use golden section search to minimize

f(x) = 0.5− x exp(−x2)
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Example, continued

x1 f1 x2 f2
0.764 0.074 1.236 0.232
0.472 0.122 0.764 0.074
0.764 0.074 0.944 0.113
0.652 0.074 0.764 0.074
0.584 0.085 0.652 0.074
0.652 0.074 0.695 0.071
0.695 0.071 0.721 0.071
0.679 0.072 0.695 0.071
0.695 0.071 0.705 0.071
0.705 0.071 0.711 0.071

< interactive example >
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Successive Parabolic Interpolation
Fit quadratic polynomial to three function values
Take minimum of quadratic to be new approximation to
minimum of function

New point replaces oldest of three previous points and
process is repeated until convergence
Convergence rate of successive parabolic interpolation is
superlinear, with r ≈ 1.324
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Example: Successive Parabolic Interpolation

Use successive parabolic interpolation to minimize

f(x) = 0.5− x exp(−x2)
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Example, continued

xk f(xk)

0.000 0.500
0.600 0.081
1.200 0.216
0.754 0.073
0.721 0.071
0.692 0.071
0.707 0.071

< interactive example >

Michael T. Heath Scientific Computing 26 / 74

http://www.cs.illinois.edu/~heath/iem/optimization/SuccessiveParabolic/


Optimization Problems
One-Dimensional Optimization
Multi-Dimensional Optimization

Golden Section Search
Successive Parabolic Interpolation
Newton’s Method

Newton’s Method
Another local quadratic approximation is truncated Taylor
series

f(x+ h) ≈ f(x) + f ′(x)h+
f ′′(x)

2
h2

By differentiation, minimum of this quadratic function of h is
given by h = −f ′(x)/f ′′(x)
Suggests iteration scheme

xk+1 = xk − f ′(xk)/f ′′(xk)

which is Newton’s method for solving nonlinear equation
f ′(x) = 0

Newton’s method for finding minimum normally has
quadratic convergence rate, but must be started close
enough to solution to converge < interactive example >
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Example: Newton’s Method
Use Newton’s method to minimize f(x) = 0.5− x exp(−x2)
First and second derivatives of f are given by

f ′(x) = (2x2 − 1) exp(−x2)
and

f ′′(x) = 2x(3− 2x2) exp(−x2)
Newton iteration for zero of f ′ is given by

xk+1 = xk − (2x2k − 1)/(2xk(3− 2x2k))

Using starting guess x0 = 1, we obtain

xk f(xk)

1.000 0.132
0.500 0.111
0.700 0.071
0.707 0.071
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Safeguarded Methods

As with nonlinear equations in one dimension,
slow-but-sure and fast-but-risky optimization methods can
be combined to provide both safety and efficiency

Most library routines for one-dimensional optimization are
based on this hybrid approach

Popular combination is golden section search and
successive parabolic interpolation, for which no derivatives
are required
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Direct Search Methods

Direct search methods for multidimensional optimization
make no use of function values other than comparing them

For minimizing function f of n variables, Nelder-Mead
method begins with n+ 1 starting points, forming simplex
in Rn

Then move to new point along straight line from current
point having highest function value through centroid of
other points

New point replaces worst point, and process is repeated

Direct search methods are useful for nonsmooth functions
or for small n, but expensive for larger n

< interactive example >
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Steepest Descent Method

Let f : Rn → R be real-valued function of n real variables

At any point x where gradient vector is nonzero, negative
gradient, −∇f(x), points downhill toward lower values of f

In fact, −∇f(x) is locally direction of steepest descent: f
decreases more rapidly along direction of negative
gradient than along any other

Steepest descent method: starting from initial guess x0,
successive approximate solutions given by

xk+1 = xk − αk∇f(xk)

where αk is line search parameter that determines how far
to go in given direction

Michael T. Heath Scientific Computing 31 / 74



Optimization Problems
One-Dimensional Optimization
Multi-Dimensional Optimization

Unconstrained Optimization
Nonlinear Least Squares
Constrained Optimization

Steepest Descent, continued

Given descent direction, such as negative gradient,
determining appropriate value for αk at each iteration is
one-dimensional minimization problem

min
αk

f(xk − αk∇f(xk))

that can be solved by methods already discussed

Steepest descent method is very reliable: it can always
make progress provided gradient is nonzero

But method is myopic in its view of function’s behavior, and
resulting iterates can zigzag back and forth, making very
slow progress toward solution

In general, convergence rate of steepest descent is only
linear, with constant factor that can be arbitrarily close to 1
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Example: Steepest Descent

Use steepest descent method to minimize

f(x) = 0.5x21 + 2.5x22

Gradient is given by ∇f(x) =
[
x1
5x2

]
Taking x0 =

[
5
1

]
, we have ∇f(x0) =

[
5
5

]
Performing line search along negative gradient direction,

min
α0

f(x0 − α0∇f(x0))

exact minimum along line is given by α0 = 1/3, so next

approximation is x1 =

[
3.333
−0.667

]
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Example, continued

xk f(xk) ∇f(xk)
5.000 1.000 15.000 5.000 5.000
3.333 −0.667 6.667 3.333 −3.333
2.222 0.444 2.963 2.222 2.222
1.481 −0.296 1.317 1.481 −1.481
0.988 0.198 0.585 0.988 0.988
0.658 −0.132 0.260 0.658 −0.658
0.439 0.088 0.116 0.439 0.439
0.293 −0.059 0.051 0.293 −0.293
0.195 0.039 0.023 0.195 0.195
0.130 −0.026 0.010 0.130 −0.130
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Example, continued

< interactive example >
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Newton’s Method

Broader view can be obtained by local quadratic
approximation, which is equivalent to Newton’s method

In multidimensional optimization, we seek zero of gradient,
so Newton iteration has form

xk+1 = xk −H−1f (xk)∇f(xk)

where Hf (x) is Hessian matrix of second partial
derivatives of f ,

{Hf (x)}ij =
∂2f(x)

∂xi∂xj
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Newton’s Method, continued

Do not explicitly invert Hessian matrix, but instead solve
linear system

Hf (xk)sk = −∇f(xk)

for Newton step sk, then take as next iterate

xk+1 = xk + sk

Convergence rate of Newton’s method for minimization is
normally quadratic

As usual, Newton’s method is unreliable unless started
close enough to solution to converge

< interactive example >
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Example: Newton’s Method

Use Newton’s method to minimize

f(x) = 0.5x21 + 2.5x22

Gradient and Hessian are given by

∇f(x) =
[
x1
5x2

]
and Hf (x) =

[
1 0
0 5

]

Taking x0 =

[
5
1

]
, we have ∇f(x0) =

[
5
5

]
Linear system for Newton step is

[
1 0
0 5

]
s0 =

[
−5
−5

]
, so

x1 = x0 + s0 =

[
5
1

]
+

[
−5
−1

]
=

[
0
0

]
, which is exact solution

for this problem, as expected for quadratic function
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Newton’s Method, continued

In principle, line search parameter is unnecessary with
Newton’s method, since quadratic model determines
length, as well as direction, of step to next approximate
solution

When started far from solution, however, it may still be
advisable to perform line search along direction of Newton
step sk to make method more robust (damped Newton)

Once iterates are near solution, then αk = 1 should suffice
for subsequent iterations
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Newton’s Method, continued

If objective function f has continuous second partial
derivatives, then Hessian matrix Hf is symmetric, and
near minimum it is positive definite

Thus, linear system for step to next iterate can be solved in
only about half of work required for LU factorization

Far from minimum, Hf (xk) may not be positive definite, so
Newton step sk may not be descent direction for function,
i.e., we may not have

∇f(xk)Tsk < 0

In this case, alternative descent direction can be
computed, such as negative gradient or direction of
negative curvature, and then perform line search
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Trust Region Methods

Alternative to line search is trust region method, in which
approximate solution is constrained to lie within region
where quadratic model is sufficiently accurate

If current trust radius is binding, minimizing quadratic
model function subject to this constraint may modify
direction as well as length of Newton step

Accuracy of quadratic model is assessed by comparing
actual decrease in objective function with that predicted by
quadratic model, and trust radius is increased or
decreased accordingly
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Trust Region Methods, continued
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Quasi-Newton Methods

Newton’s method costs O(n3) arithmetic and O(n2) scalar
function evaluations per iteration for dense problem

Many variants of Newton’s method improve reliability and
reduce overhead

Quasi-Newton methods have form

xk+1 = xk − αkB−1k ∇f(xk)

where αk is line search parameter and Bk is approximation
to Hessian matrix

Many quasi-Newton methods are more robust than
Newton’s method, are superlinearly convergent, and have
lower overhead per iteration, which often more than offsets
their slower convergence rate
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Secant Updating Methods

Could use Broyden’s method to seek zero of gradient, but
this would not preserve symmetry of Hessian matrix

Several secant updating formulas have been developed for
minimization that not only preserve symmetry in
approximate Hessian matrix, but also preserve positive
definiteness

Symmetry reduces amount of work required by about half,
while positive definiteness guarantees that quasi-Newton
step will be descent direction
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BFGS Method

One of most effective secant updating methods for minimization
is BFGS

x0 = initial guess
B0 = initial Hessian approximation
for k = 0, 1, 2, . . .

Solve Bk sk = −∇f(xk) for sk
xk+1 = xk + sk
yk = ∇f(xk+1)−∇f(xk)
Bk+1 = Bk + (yky

T
k )/(y

T
k sk) − (Bksks

T
kBk)/(s

T
kBksk)

end
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BFGS Method, continued

In practice, factorization of Bk is updated rather than Bk

itself, so linear system for sk can be solved at cost of O(n2)
rather than O(n3) work

Unlike Newton’s method for minimization, no second
derivatives are required

Can start with B0 = I, so initial step is along negative
gradient, and then second derivative information is
gradually built up in approximate Hessian matrix over
successive iterations

BFGS normally has superlinear convergence rate, even
though approximate Hessian does not necessarily
converge to true Hessian

Line search can be used to enhance effectiveness
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Example: BFGS Method

Use BFGS to minimize f(x) = 0.5x21 + 2.5x22

Gradient is given by ∇f(x) =
[
x1
5x2

]
Taking x0 =

[
5 1

]T and B0 = I, initial step is negative
gradient, so

x1 = x0 + s0 =

[
5
1

]
+

[
−5
−5

]
=

[
0
−4

]
Updating approximate Hessian using BFGS formula, we
obtain

B1 =

[
0.667 0.333
0.333 0.667

]
Then new step is computed and process is repeated
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Example: BFGS Method

xk f(xk) ∇f(xk)
5.000 1.000 15.000 5.000 5.000
0.000 −4.000 40.000 0.000 −20.000
−2.222 0.444 2.963 −2.222 2.222
0.816 0.082 0.350 0.816 0.408
−0.009 −0.015 0.001 −0.009 −0.077
−0.001 0.001 0.000 −0.001 0.005

Increase in function value can be avoided by using line
search, which generally enhances convergence

For quadratic objective function, BFGS with exact line
search finds exact solution in at most n iterations, where n
is dimension of problem < interactive example >
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Conjugate Gradient Method

Another method that does not require explicit second
derivatives, and does not even store approximation to
Hessian matrix, is conjugate gradient (CG) method

CG generates sequence of conjugate search directions,
implicitly accumulating information about Hessian matrix

For quadratic objective function, CG is theoretically exact
after at most n iterations, where n is dimension of problem

CG is effective for general unconstrained minimization as
well
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Conjugate Gradient Method, continued

x0 = initial guess
g0 = ∇f(x0)
s0 = −g0
for k = 0, 1, 2, . . .

Choose αk to minimize f(xk + αksk)
xk+1 = xk + αksk
gk+1 = ∇f(xk+1)
βk+1 = (gTk+1gk+1)/(g

T
k gk)

sk+1 = −gk+1 + βk+1sk
end

Alternative formula for βk+1 is

βk+1 = ((gk+1 − gk)Tgk+1)/(g
T
k gk)
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Example: Conjugate Gradient Method

Use CG method to minimize f(x) = 0.5x21 + 2.5x22

Gradient is given by ∇f(x) =
[
x1
5x2

]
Taking x0 =

[
5 1

]T , initial search direction is negative
gradient,

s0 = −g0 = −∇f(x0) =

[
−5
−5

]
Exact minimum along line is given by α0 = 1/3, so next
approximation is x1 =

[
3.333 −0.667

]T , and we compute
new gradient,

g1 = ∇f(x1) =

[
3.333
−3.333

]
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Example, continued

So far there is no difference from steepest descent method

At this point, however, rather than search along new
negative gradient, we compute instead

β1 = (gT1 g1)/(g
T
0 g0) = 0.444

which gives as next search direction

s1 = −g1 + β1s0 =

[
−3.333
3.333

]
+ 0.444

[
−5
−5

]
=

[
−5.556
1.111

]
Minimum along this direction is given by α1 = 0.6, which
gives exact solution at origin, as expected for quadratic
function

< interactive example >
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Truncated Newton Methods

Another way to reduce work in Newton-like methods is to
solve linear system for Newton step by iterative method

Small number of iterations may suffice to produce step as
useful as true Newton step, especially far from overall
solution, where true Newton step may be unreliable
anyway

Good choice for linear iterative solver is CG method, which
gives step intermediate between steepest descent and
Newton-like step

Since only matrix-vector products are required, explicit
formation of Hessian matrix can be avoided by using finite
difference of gradient along given vector
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Nonlinear Least Squares

Given data (ti, yi), find vector x of parameters that gives
“best fit” in least squares sense to model function f(t,x),
where f is nonlinear function of x

Define components of residual function

ri(x) = yi − f(ti,x), i = 1, . . . ,m

so we want to minimize φ(x) = 1
2r

T (x)r(x)

Gradient vector is ∇φ(x) = JT (x)r(x) and Hessian matrix
is

Hφ(x) = J
T (x)J(x) +

m∑
i=1

ri(x)Hi(x)

where J(x) is Jacobian of r(x), and Hi(x) is Hessian of
ri(x)
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Nonlinear Least Squares, continued

Linear system for Newton step is(
JT (xk)J(xk) +

m∑
i=1

ri(xk)Hi(xk)

)
sk = −JT (xk)r(xk)

m Hessian matrices Hi are usually inconvenient and
expensive to compute

Moreover, in Hφ each Hi is multiplied by residual
component ri, which is small at solution if fit of model
function to data is good
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Gauss-Newton Method

This motivates Gauss-Newton method for nonlinear least
squares, in which second-order term is dropped and linear
system

JT (xk)J(xk)sk = −JT (xk)r(xk)

is solved for approximate Newton step sk at each iteration

This is system of normal equations for linear least squares
problem

J(xk)sk ∼= −r(xk)

which can be solved better by QR factorization

Next approximate solution is then given by

xk+1 = xk + sk

and process is repeated until convergence
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Example: Gauss-Newton Method

Use Gauss-Newton method to fit nonlinear model function

f(t,x) = x1 exp(x2t)

to data
t 0.0 1.0 2.0 3.0
y 2.0 0.7 0.3 0.1

For this model function, entries of Jacobian matrix of
residual function r are given by

{J(x)}i,1 =
∂ri(x)

∂x1
= − exp(x2ti)

{J(x)}i,2 =
∂ri(x)

∂x2
= −x1ti exp(x2ti)
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Example, continued

If we take x0 =
[
1 0

]T , then Gauss-Newton step s0 is
given by linear least squares problem

−1 0
−1 −1
−1 −2
−1 −3

 s0 ∼=

−1
0.3
0.7
0.9


whose solution is s0 =

[
0.69
−0.61

]
Then next approximate solution is given by x1 = x0 + s0,
and process is repeated until convergence
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Example, continued

xk ‖r(xk)‖22
1.000 0.000 2.390
1.690 −0.610 0.212
1.975 −0.930 0.007
1.994 −1.004 0.002
1.995 −1.009 0.002
1.995 −1.010 0.002

< interactive example >
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Gauss-Newton Method, continued

Gauss-Newton method replaces nonlinear least squares
problem by sequence of linear least squares problems
whose solutions converge to solution of original nonlinear
problem

If residual at solution is large, then second-order term
omitted from Hessian is not negligible, and Gauss-Newton
method may converge slowly or fail to converge

In such “large-residual” cases, it may be best to use
general nonlinear minimization method that takes into
account true full Hessian matrix
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Levenberg-Marquardt Method

Levenberg-Marquardt method is another useful alternative
when Gauss-Newton approximation is inadequate or yields
rank deficient linear least squares subproblem

In this method, linear system at each iteration is of form

(JT (xk)J(xk) + µkI)sk = −JT (xk)r(xk)

where µk is scalar parameter chosen by some strategy

Corresponding linear least squares problem is[
J(xk)√
µkI

]
sk ∼=

[
−r(xk)

0

]
With suitable strategy for choosing µk, this method can be
very robust in practice, and it forms basis for several
effective software packages < interactive example >
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Equality-Constrained Optimization

For equality-constrained minimization problem

min f(x) subject to g(x) = 0

where f : Rn → R and g : Rn → Rm, with m ≤ n, we seek
critical point of Lagrangian L(x,λ) = f(x) + λTg(x)

Applying Newton’s method to nonlinear system

∇L(x,λ) =
[
∇f(x) + JTg (x)λ

g(x)

]
= 0

we obtain linear system[
B(x,λ) JTg (x)

Jg(x) O

] [
s
δ

]
= −

[
∇f(x) + JTg (x)λ

g(x)

]
for Newton step (s, δ) in (x,λ) at each iteration
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Sequential Quadratic Programming

Foregoing block 2× 2 linear system is equivalent to
quadratic programming problem, so this approach is
known as sequential quadratic programming

Types of solution methods include

Direct solution methods, in which entire block 2× 2 system
is solved directly
Range space methods, based on block elimination in block
2× 2 linear system
Null space methods, based on orthogonal factorization of
matrix of constraint normals, JT

g (x)

< interactive example >
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Merit Function

Once Newton step (s, δ) determined, we need merit
function to measure progress toward overall solution for
use in line search or trust region

Popular choices include penalty function

φρ(x) = f(x) + 1
2 ρ g(x)

Tg(x)

and augmented Lagrangian function

Lρ(x,λ) = f(x) + λTg(x) + 1
2 ρ g(x)

Tg(x)

where parameter ρ > 0 determines relative weighting of
optimality vs feasibility

Given starting guess x0, good starting guess for λ0 can be
obtained from least squares problem

JTg (x0)λ0
∼= −∇f(x0)
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Inequality-Constrained Optimization

Methods just outlined for equality constraints can be
extended to handle inequality constraints by using active
set strategy

Inequality constraints are provisionally divided into those
that are satisfied already (and can therefore be temporarily
disregarded) and those that are violated (and are therefore
temporarily treated as equality constraints)

This division of constraints is revised as iterations proceed
until eventually correct constraints are identified that are
binding at solution
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Penalty Methods

Merit function can also be used to convert
equality-constrained problem into sequence of
unconstrained problems

If x∗ρ is solution to

min
x
φρ(x) = f(x) + 1

2 ρ g(x)
Tg(x)

then under appropriate conditions

lim
ρ→∞

x∗ρ = x
∗

This enables use of unconstrained optimization methods,
but problem becomes ill-conditioned for large ρ, so we
solve sequence of problems with gradually increasing
values of ρ, with minimum for each problem used as
starting point for next problem < interactive example >
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Barrier Methods
For inequality-constrained problems, another alternative is
barrier function, such as

φµ(x) = f(x)− µ
p∑
i=1

1

hi(x)

or

φµ(x) = f(x)− µ
p∑
i=1

log(−hi(x))

which increasingly penalize feasible points as they
approach boundary of feasible region
Again, solutions of unconstrained problem approach x∗ as
µ→ 0, but problems are increasingly ill-conditioned, so
solve sequence of problems with decreasing values of µ
Barrier functions are basis for interior point methods for
linear programming
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Example: Constrained Optimization

Consider quadratic programming problem

min
x
f(x) = 0.5x21 + 2.5x22

subject to
g(x) = x1 − x2 − 1 = 0

Lagrangian function is given by

L(x, λ) = f(x) + λ g(x) = 0.5x21 + 2.5x22 + λ(x1 − x2 − 1)

Since

∇f(x) =
[
x1
5x2

]
and Jg(x) =

[
1 −1

]
we have

∇xL(x, λ) = ∇f(x) + JTg (x)λ =

[
x1
5x2

]
+ λ

[
1
−1

]
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Example, continued

So system to be solved for critical point of Lagrangian is

x1 + λ = 0

5x2 − λ = 0

x1 − x2 = 1

which in this case is linear system1 0 1
0 5 −1
1 −1 0

x1x2
λ

 =

00
1


Solving this system, we obtain solution

x1 = 0.833, x2 = −0.167, λ = −0.833
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Example, continued
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Linear Programming

One of most important and common constrained
optimization problems is linear programming

One standard form for such problems is

min f(x) = cTx subject to Ax = b and x ≥ 0

where m < n, A ∈ Rm×n, b ∈ Rm, and c,x ∈ Rn

Feasible region is convex polyhedron in Rn, and minimum
must occur at one of its vertices

Simplex method moves systematically from vertex to
vertex until minimum point is found
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Linear Programming, continued

Simplex method is reliable and normally efficient, able to
solve problems with thousands of variables, but can
require time exponential in size of problem in worst case

Interior point methods for linear programming developed in
recent years have polynomial worst case solution time

These methods move through interior of feasible region,
not restricting themselves to investigating only its vertices

Although interior point methods have significant practical
impact, simplex method is still predominant method in
standard packages for linear programming, and its
effectiveness in practice is excellent
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Example: Linear Programming

To illustrate linear programming, consider

min
x

= cTx = −8x1 − 11x2

subject to linear inequality constraints

5x1 + 4x2 ≤ 40, −x1 + 3x2 ≤ 12, x1 ≥ 0, x2 ≥ 0

Minimum value must occur at vertex of feasible region, in
this case at x1 = 3.79, x2 = 5.26, where objective function
has value −88.2
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Example, continued
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