CS 450: Numerical Anlaysis¹ Introduction to Scientific Computing

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Scientific Computing Applications and Context

- ➤ Mathematical modelling for computational science Typical scientific computing problems are numerical solutions to PDEs
 - Newtonian dynamics: simulating particle systems in time
 - Fluid and air flow models for engineering
 - PDE-constrained numerical optimization: finding optimal configurations (used in engineering of control systems)
 - Quantum chemistry (electronic structure calculations): many-electron Schrödinger equation

Linear algebra and computation

- Linear algebra and numerical optimization are building blocks for machine learning methods and data analysis
- Computer architecture, compilers, and parallel computing use numerical algorithms (matrix multiplication, Gaussian elimination) as benchmarks

Example: Mechanics²

- Newton's laws provide incomplete particle-centric picture
- Physical systems can be described in terms of degrees of freedom (DoFs)
 - A piston moving up and down requires ______ DoFs
 - ► 1-particle system requires _____ DoFs
 - 2-particle system requires _____ DoFs
 - 2-particles at a fixed distance require ______ DoFs
- ightharpoonup N-particle system *configuration* described by 3N DoFs

² Variational Principles of Mechanics, Cornelius Lanczos, Dover Books on Physics, 1949.

Course Structure

► Complex numerical problems are generally reduced to simpler problems

► The course topics will follow this hierarchical structure

Numerical Analysis

Numerical Problems involving Continuous Phenomena:

► Error Analysis:

Sources of Error

► Representation of Numbers:

Propagated Data Error:

▶ Computational Error = $\hat{f}(x) - f(x)$ = Truncation Error + Rounding Error

Error Analysis

► Forward Error:

► Backward Error:

Visualization of Forward and Backward Error

Conditioning

► Absolute Condition Number:

(Relative) Condition Number:

Posedness and Conditioning

▶ What is the condition number of an ill-posed problem?

Stability and Accuracy

► Accuracy:

► Stability:

Error and Conditioning

- Two major sources of error: roundoff and truncation error.
 - roundoff error concerns floating point error due to finite precision
 - truncation error concerns error incurred due to algorithmic approximation, e.g. the representation of a function by a finite Taylor series

To study the propagation of roundoff error in arithmetic we can use the notion of conditioning.

Floating Point Numbers

Scientific Notation

Demo: Picking apart a floating point number **Demo:** Density of Floating Point Numbers

Significand (Mantissa) and Exponent Given x with s leading bits x_0, \ldots, x_{s-1}

Maximum Relative Representation Error (Machine Epsilon)

Demo: Catastrophic Cancellation Rounding Error in Operations (I) Activity: Cancellation in Standard Deviation Computation

Addition and Subtraction

Cancellation - lose of sig. digits

1.2471

(1+6)

-1.233

(1+6)

= .014 => 1.4
$$\times 10^{-3}$$
 + $\times 1.247$ + $\times 1.238$

$$term = \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{1}$$

Rounding Error in Operations (II)

Multiplication and Division

0, -0, 00, -00, NaN = 010 = 00-00

Gradual Underflow: Avoiding underflow in addition

Floating Point Number Line

