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"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



Demo: Vector Norms

Vector Norms .
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Inner-Product Spaces
> Properties of inner-product spaces: Inner products (x, y) must satisfy
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Matrix Norms
» Properties of matrix norms:
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» Frobenius norm:
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» Operator/induced/subordinate matrix norms:
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Demo: Matrix norms
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Induced Matrix Norms
» Interpreting induced matrix norms:
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» General induced matrix norms:



Demo: Conditioning of 2x2 Matrices
Demo: Condition number visualized

Matrix Condition Num — =

> Definition: x(A)/= ||A][ - | ‘A~1!|)/is theratio between the shortest/longest
distances from the unit-balttént any point on the surface.

» Intuitive derivation:
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Matrix Conditioning

» The matrix condition number x(A) is the ratio between the max and min
distance from the surface to the cente)r( OHPE unit ball transformed by x(A):

N
o

» The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product: N g,\} . A (x %2 = A> + ASx
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Norms and Conditioning of Orthogonal Matrices
» Orthogonal matrices: CQ?T @H @WQ <3 QG?"I
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» Norm and condition humber of orthogonal matrices:
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Singular Value Decomposition O__.) O &

» The singular value decomposm\n (SvD):
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Activity: Singular Value Decomposition and Norms

Norms and Conditioning via SVD

» Norm and condition number in terms of singular values:
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Visualization of Matrix Conditioning (\ATA'}"_I:_ ATA TATRSY
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Conditioning of Linear Systems

> Lets now return to formally deriving the conditioning of solving Ax = b:



Conditioning of Linear Systems II

» Consider perturbations to the input coefficients A = A + § A:



Solving Basic Linear Systems

» Solve Dx = b if D is diagonal

» Solve Qx = b if Q is orthogonal

» GivenSVD A =UXV7T solve Az =b



Demo: Coding back-substitution

Solving Triangular Systems

> Lx = bif L is lower-triangular is solved by forward substitution:

li1zy = by T =
lorxy +looxo =by = x99 =

[3121 + l30w9 + l3323 = b3 xr3 =

» Algorithm can also be formulated recursively by blocks:



Solving Triangular Systems

> Existence of solutionto Lz = b:

» Uniqueness of solution:

» Computational complexity of forward/backward substitution:



Properties of Triangular Matrices
» Z = XY islower triangularis X and Y are both lower triangular:

» L—1'islower triangular if it exists:



LU Factorization
» An LU factorization consists of a unit-diagonal lower-triangular factor L
and upper-triangular factor U such that A = LU:

» Given an LU factorization of A, we can solve the linear system Ax = b:



Demo: LU factorization

Gaussian Elimination Algorithm
» Algorithm for factorization is derived from equations given by A = LU

» The computational complexity of LU is O(n?):



Existence of LU Factorization

» The LU factorization may not exist: Consider matrix

o o W
W = N

» Permutation of rows enables us to transform the matrix so the LU
factorization does exist:



. .. . . . . ) Demo: LU with Partial Pivoting
Gaussian Elimination with Partial Pivoting

» Partial pivoting permutes rows to make divisor u;; is maximal at each step:

> A row permutation corresponds to an application of a row permutation
matrix Py, = I — (e; — ex)(ej — ex)T:



Partial Pivoting Example

» Lets consider again the matrix A =

O Oy W

W = N



Complete Pivoting

» Complete pivoting permutes rows and columns to make divisor u;; is
maximal at each step:

> Complete pivoting is noticeably more expensive than partial pivoting:



Round-off Error in LU

> Lets consider factorization of [6

1 .
11 where € < €mach:

> Permuting the rows of A in partial pivoting gives PA = [1 ﬂ



Error Analysis of LU

» The main source of round-off error in LU is in the computation of the Schur
complement:

» When computed in floating point, absAqute backward error 6 A in LU (so
LU =A+6A)is |5aij’ < 6mach(‘L‘ : ’U‘)ij



Helpful Matrix Properties

> Matrix is diagonally dominant, s}, . aij| < |a;:

> Matrix is symmetric positive definite (SPD), S0 V., z1 Az > 0:

> Matrix is symmetric but indefinite:

» Matrix is banded, a;; = 0 if |i — j| > b:



Demo: Sherman-Morrison

Solving Many Linear Systems Activity: Sherman-Morrison-Woodbury Formula

> Suppose we have computed A = LU and want to solve AX = B where B
isn x kwith k < n:

> Suppose we have computed A = LU and now want to solve a perturbed
system (A — uv?)x = b:
Can use the Sherman-Morrison-Woodbury formula
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