CS 450: Numerical Anlaysis¹ Linear Systems

Ax=b

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Vector Norms

Properties of vector norms
$$\begin{bmatrix}
||x|| \ge 0, & ||x|| = 0
\end{bmatrix}$$

$$||x|| = |d|||x||, & ||x + y|| \le ||x|| + ||y||$$

A norm is uniquely defined by its unit sphere:

▶ *p*-norms

$$p$$
-norms $\|x\|_{p} = \left(\sum_{i=1}^{n} |x_i|^{n}\right)^{n}$

$$\|x\|_{\infty} = \sum_{j=1}^{n} |x_{j}|$$

$$\|x\|_{\infty} = \max_{j} |x_{j}|$$

Inner-Product Spaces

Properties of inner-product spaces: Inner products $\langle x, y \rangle$ must satisfy

Inner-product-based vector norms

Inner-product-based vector norms
$$|\langle x, y \rangle| \leq \sqrt{\frac{\langle x, x \rangle}{|\langle x, y \rangle|}} |\langle x, y \rangle| \leq |\langle x, y$$

Matrix Norms

Properties of matrix norms:

Frobenius norm:

$$||m{A}|| \geq 0$$
 $||m{A}|| = 0 \Leftrightarrow m{A} = m{0}$ $||m{\alpha}m{A}|| = |m{\alpha}| \cdot ||m{A}||$ $||m{A} + m{B}|| \leq ||m{A}|| + ||m{B}||$ (triangle inequality)

MAIL = 1 2 2 a2 = | vec(A) | 2 Operator/induced/subordinate matrix norms:

A -> fcx=Ax

Induced Matrix Norms

► Interpreting induced matrix norms:

General induced matrix norms:

- **Definition**: $\kappa(A) = ||A|| \cdot ||A^{-1}||$ is the ratio between the shortest/longest distances from the unit-ball center to any point on the surface.
- Intuitive derivation:

$$\kappa(m{A}) = \max_{ ext{inputs}} \quad \max_{ ext{perturbations in input}} \left| \frac{ ext{relative perturbation in output}}{ ext{relative perturbation in input}} \right|$$

since a matrix is a linear operator, we can decouple its action on the input xand the perturbation δx since $A(x+\delta x)=Ax+A\delta x$, so

Matrix Conditioning

▶ The matrix condition number $\kappa(A)$ is the ratio between the max and min distance from the surface to the center of the unit ball transformed by $\kappa(A)$:

The matrix condition number bounds the worst-case amplification of error in a matrix-vector product: $y + \delta y = A (x + \delta x) = Ax + A \delta x$ $\delta y = A \delta x$

Norms and Conditioning of Orthogonal Matrices

► Orthogonal matrices:
$$Q^{\dagger} = Q^{\dagger}$$
 $Q^{\dagger} = I$ $Q = Q^{\dagger} = I$

Norm and condition number of orthogonal matrices:

$$\|Q\|_{2} = \|X\|_{2}$$

$$\|Q \times \|_{2} = \|X\|_{2}$$

$$\|C(Q) = \|Q\|_{2} \|Q^{\dagger}\|_{2} = 1$$

$$\|C(Q) = \|Q\|_{2} \|Q^{\dagger}\|_{2} = 1$$

Singular Value Decomposition

Activity: Singular Value Decomposition and Norms

Norm and condition number in terms of singular values:

 $\frac{x^{T}A^{T}(Ax)}{x^{T}x} \ge 0$ Visualization of Matrix Conditioning (ATA) = ATA $\{x: x \in \mathbb{R}^2, ||x||_2 = 1\}$ $\rightarrow \{Ax : x \in \mathbb{R}^2, ||x||_2 = 1\}$ $\kappa(A) = \sigma_{\rm max}/\sigma_{\rm min}$ σ_{\min} $\sigma_{
m max}$ $||A||_2 = \sigma_{\text{max}}$ $1/||A^{-1}||_2 = \sigma_{\text{min}}$ $A = U \begin{bmatrix} \sigma_{\text{max}} \\ \vdots \\ \sigma_{\text{min}} \end{bmatrix} V^T$ AT = V Pier. Imm UT

Conditioning of Linear Systems

Lets now return to formally deriving the conditioning of solving Ax = b:

Conditioning of Linear Systems II

lacktriangle Consider perturbations to the input coefficients $\hat{A}=A+\delta A$:

Solving Basic Linear Systems

▶ Solve Dx = b if D is diagonal

lacksquare Solve $m{Q}m{x}=m{b}$ if $m{Q}$ is orthogonal

lacktriangle Given SVD $m{A} = m{U}m{\Sigma}m{V}^T$, solve $m{A}m{x} = m{b}$

Solving Triangular Systems

ightharpoonup Lx = b if L is lower-triangular is solved by forward substitution:

$$\begin{array}{cccc} l_{11}x_1 = b_1 & & x_1 = \\ l_{21}x_1 + l_{22}x_2 = b_2 & \Rightarrow & x_2 = \\ l_{31}x_1 + l_{32}x_2 + l_{33}x_3 = b_3 & & x_3 = \\ & \vdots & & \vdots & & \vdots \end{array}$$

Algorithm can also be formulated recursively by blocks:

Solving Triangular Systems

Existence of solution to Lx = b:

Uniqueness of solution:

Computational complexity of forward/backward substitution:

Properties of Triangular Matrices

ightharpoonup Z = XY is lower triangular is X and Y are both lower triangular:

▶ L^{-1} is lower triangular if it exists:

LU Factorization

An *LU factorization* consists of a unit-diagonal lower-triangular *factor* L and upper-triangular factor U such that A = LU:

lacktriangle Given an LU factorization of A, we can solve the linear system Ax=b:

Gaussian Elimination Algorithm

lacktriangle Algorithm for factorization is derived from equations given by A=LU:

▶ The computational complexity of LU is $O(n^3)$:

Existence of LU Factorization

▶ The LU factorization may not exist: Consider matrix $\begin{bmatrix} 3 & 2 \\ 6 & 4 \\ 0 & 3 \end{bmatrix}$.

Permutation of rows enables us to transform the matrix so the LU factorization does exist:

Gaussian Elimination with Partial Pivoting

Partial pivoting permutes rows to make divisor u_{ii} is maximal at each step:

A row permutation corresponds to an application of a row permutation matrix $P_{jk} = I - (e_j - e_k)(e_j - e_k)^T$:

Partial Pivoting Example

Lets consider again the matrix
$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 6 & 4 \\ 0 & 3 \end{bmatrix}$$
.

Complete Pivoting

Complete pivoting permutes rows and columns to make divisor u_{ii} is maximal at each step:

Complete pivoting is noticeably more expensive than partial pivoting:

Round-off Error in LU

▶ Lets consider factorization of $\begin{bmatrix} \epsilon & 1 \\ 1 & 1 \end{bmatrix}$ where $\epsilon < \epsilon_{\mathsf{mach}}$:

▶ Permuting the rows of A in partial pivoting gives $PA = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$

Error Analysis of LU

► The main source of round-off error in LU is in the computation of the Schur complement:

When computed in floating point, absolute backward error δA in LU (so $\hat{m{L}}\hat{m{U}}=m{A}+\delta m{A}$) is $|\delta a_{ij}|\leq \epsilon_{\sf mach}(|\hat{m{L}}|\cdot|\hat{m{U}}|)_{ij}$

Helpful Matrix Properties

▶ Matrix is *diagonally dominant*, so $\sum_{i \neq j} |a_{ij}| \leq |a_{ii}|$:

► Matrix is symmetric positive definite (SPD), so $\forall_{x\neq 0}, x^T A x > 0$:

Matrix is symmetric but indefinite:

▶ Matrix is *banded*, $a_{ij} = 0$ if |i - j| > b:

Suppose we have computed A = LU and want to solve AX = B where B is $n \times k$ with k < n:

Suppose we have computed $m{A} = m{L} m{U}$ and now want to solve a perturbed system $(m{A} - m{u} m{v}^T) m{x} = m{b}$:

Can use the Sherman-Morrison-Woodbury formula

$$(A - uv^T)^{-1} = A^{-1} + \frac{A^{-1}uv^TA^{-1}}{1 - v^TA^{-1}u}$$