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"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



Demo: Vector Norms

Vector Norms

» Properties of vector norms

» A norm is uniquely defined by its unit sphere:

» p-norms



Inner-Product Spaces
> Properties of inner-product spaces: Inner products (x,y) must satisfy

(x,z) >0
(x,2)=0 <& x=0
(z,y) = (y,)
(x,y + 2) = (z,y) + (z, 2)
(az,y) = oz, y)

» Inner-product-based vector norms



Matrix Norms
» Properties of matrix norms:

|Al[ =0
I1A|=0 < A=0
|l Al] = o] - [|A]]

I|A+ BJ|| < ||A|| + ||B]|| (triangle inequality)

» Frobenius norm:

» Operator/induced/subordinate matrix norms:

Demo: Matrix norms



Induced Matrix Norms

» Interpreting induced matrix norms:

» General induced matrix norms:



Demo: Conditioning of 2x2 Matrices

Matrix Condition Number Demo: Condition number visualized

» Definition: k(A) = ||A|| - ||A~!|| is the ratio between the shortest/longest
distances from the unit-ball center to any point on the surface.

» Intuitive derivation:

relative perturbation in output
k(A) = max max - —
inputs  perturbations ininput | relative perturbation in input

since a matrix is a linear operator, we can decouple its action on the input «
and the perturbation éx since A(x + dx) = Ax + Adzx, SO

1Al

max relative perturbation growth
perturbations in input

max relative input reduction
inputs

Kk(A) =

1/||A=]



Matrix Conditioning

» The matrix condition number x(A) is the ratio between the max and min
distance from the surface to the center of the unit ball transformed by x(A):

» The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product:



Norms and Conditioning of Orthogonal Matrices

» Orthogonal matrices:

» Norm and condition humber of orthogonal matrices:



Singular Value Decomposition

» The singular value decomposition (SVD):

A= bs T Q-
o\
Ao W B 3



Activity: Singular Value Decomposition and Norms

Norms and Conditioning via SVD

» Norm and condition number in terms of singular values:



Visualization of Matrix Conditioning

> {Az:z € R?||z|2 =1}
AL A0
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Conditioning of Linear Systems
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Conditioning of Linear Systems II

» Consider perturbations to the input coefficients A = A + § A:



Solving Basic Linear Systems W

» Solve Dx = b if D is diagonal -\ Y/A
—_— = L .. \
X < br“ L X = \DL/A: D /AV\(K

» Solve Qx = b if Q is orthogonal

&ogt x: 6Th O wi= 2 by

> Given SVDA:UXSVT, solve Az = b U/
g‘o( )
x=VEML < ns VT x= b 9,(35
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Demo: Coding back-substitution

Solving Triangular Systems

> Lx = bif L is lower-triangular is solved by forward substitution:

‘-\- \;\ li1z1 = b ﬂfl—L’ /Lﬂ
lrzy +logxa =by = x= (L, Ll\Y\/LvL

ls121 + l32w2 + I3373 = b3 (;_;3- DX - L7 >/ Ly
> Algorithm can also be formulated recursively by blocks:

N | h
2N * {\
1“ Yh \["w
“& X, Ll
1'\ L’Li
X,

L. o

e Kny
So\ve Lnx'»’ - b, T("‘\: 9:1‘(:\\/'1\ o)
= O(V\




Solving Triangular Systems
» Existence of solutionto Lz = b:

oL =0 So\'w ’('3‘“" ~oh M'\’l
{3 T

» Uniqueness of solution:

» Computational complexity of forward/backward substitution:



Properties of Triangular Matrices
» Z = XY islower triangularis X and Y are both lower triangular:

N U@;}

» L—1'islower triangular if it exists:
LA

| FIRL B T3\
-t

’b\

e
A L+ a6y 7O




LU Factorization
» An LU factorization consists of a unit-diagonal lower-triangular factor L
and upper-triangular factor U such that A = LU:

—_—

\ Uy e

L= | e Vg o
41.211" V

N
4

» Given an LU factorization of A, we can solve the linear system Ax = b:

LU =h
L& -k

(Aif‘y



Demo: LU factorization

Gaussian Elimination Algorithm
» Algorithm for factorization is derived from equations givenby A = LU:

il LB

Lag 4y - (n N = wThy Le A

= Lo bl - L‘l;ﬂw{f/;_’/ﬂ"“

» The computational complexity of LU is O(n
L & Wy
1( T A'I"\

n OGN = ()
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Existence of LU Factorization —
1 oD
. . . . . ] &457\

» The LU factorization may not exist: Consider matrix f?

= f,l (A< {\’5 %L Q= [:“&-X/{& [
@ 19

» Permutation of rows enables us to transform the matrix so the LU
factorization does exist:

PATLU A-piLu

= X: N& w s P-v we = Vo




. .. . . . . ) Demo: LU with Partial Pivoting
Gaussian Elimination with Partial Pivoting

» Partial pivoting permutes rows to make divisor u;; is maximal at each step:
Se= a

» A row permutation correspgnds to an application of a row permutation
matrix Pj, = I — (e; — ek)(e] - ek)T
t ( [ -1 \F&




Partial Pivoting Example

» Lets consider again the matrix A =

O Oy W

W = N



Complete Pivoting

» Complete pivoting permutes rows and columns to make divisor u;; is
maximal at each step:

> Complete pivoting is noticeably more expensive than partial pivoting:



Round-off Error in LU

> Lets consider factorization of [6

1 .
11 where € < €mach:

> Permuting the rows of A in partial pivoting gives PA = [1 ﬂ



Error Analysis of LU

» The main source of round-off error in LU is in the computation of the Schur
complement:

» When computed in floating point, absAqute backward error 6 A in LU (so
LU =A+6A)is |5aij’ < 6mach(‘L‘ : ’U‘)ij



Helpful Matrix Properties

> Matrix is diagonally dominant, s}, . aij| < |a;:

> Matrix is symmetric positive definite (SPD), S0 V., z1 Az > 0:

> Matrix is symmetric but indefinite:

» Matrix is banded, a;; = 0 if |i — j| > b:



Demo: Sherman-Morrison

Solving Many Linear Systems Activity: Sherman-Morrison-Woodbury Formula

> Suppose we have computed A = LU and want to solve AX = B where B
isn x kwith k < n:

> Suppose we have computed A = LU and now want to solve a perturbed
system (A — uv?)x = b:
Can use the Sherman-Morrison-Woodbury formula

A lyvT A1

T\—=1 _ p4-—1
Aw) = A ATy



