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Demo: Vector Norms

Vector Norms

» Properties of vector norms

» A norm is uniquely defined by its unit sphere:

» p-norms



Inner-Product Spaces
> Properties of inner-product spaces: Inner products (x,y) must satisfy

(x,z) >0
(x,2)=0 <& x=0
(z,y) = (y,)
(x,y + 2) = (z,y) + (z, 2)
(az,y) = oz, y)

» Inner-product-based vector norms



Matrix Norms
» Properties of matrix norms:

|Al[ =0
I1A|=0 < A=0
|l Al] = o] - [|A]]

I|A+ BJ|| < ||A|| + ||B]|| (triangle inequality)

» Frobenius norm:

» Operator/induced/subordinate matrix norms:

Demo: Matrix norms



Induced Matrix Norms

» Interpreting induced matrix norms:

» General induced matrix norms:



Demo: Conditioning of 2x2 Matrices

Matrix Condition Number Demo: Condition number visualized

» Definition: k(A) = ||A|| - ||A~!|| is the ratio between the shortest/longest
distances from the unit-ball center to any point on the surface.

» Intuitive derivation:

relative perturbation in output
k(A) = max max - —
inputs  perturbations ininput | relative perturbation in input

since a matrix is a linear operator, we can decouple its action on the input «
and the perturbation éx since A(x + dx) = Ax + Adzx, SO

1Al

max relative perturbation growth
perturbations in input

max relative input reduction
inputs

Kk(A) =

1/||A=]



Matrix Conditioning

» The matrix condition number x(A) is the ratio between the max and min
distance from the surface to the center of the unit ball transformed by x(A):

» The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product:



Norms and Conditioning of Orthogonal Matrices

» Orthogonal matrices:

» Norm and condition humber of orthogonal matrices:



Singular Value Decomposition

» The singular value decomposition (SVD):



Activity: Singular Value Decomposition and Norms

Norms and Conditioning via SVD

» Norm and condition number in terms of singular values:



Visualization of Matrix Conditioning

{I:fEERQ‘,HfE\b:l} > {Az:x € R?, |||, = 1}

A

E(A) = O'max/o'min
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Conditioning of Linear Systems

> Lets now return to formally deriving the conditioning of solving Ax = b:



Conditioning of Linear Systems II

» Consider perturbations to the input coefficients A = A + § A:



Solving Basic Linear Systems

» Solve Dx = b if D is diagonal

» Solve Qx = b if Q is orthogonal

» GivenSVD A =UXV7T solve Az =b



Demo: Coding back-substitution

Solving Triangular Systems

> Lx = bif L is lower-triangular is solved by forward substitution:

li1zy = by T =
lorxy +looxo =by = x99 =

[3121 + l30w9 + l3323 = b3 xr3 =

» Algorithm can also be formulated recursively by blocks:



Solving Triangular Systems

> Existence of solutionto Lz = b:

» Uniqueness of solution:

» Computational complexity of forward/backward substitution:



Properties of Triangular Matrices
» Z = XY islower triangularis X and Y are both lower triangular:

» L—1'islower triangular if it exists:



LU Factorization
» An LU factorization consists of a unit-diagonal lower-triangular factor L
and upper-triangular factor U such that A = LU:

» Given an LU factorization of A, we can solve the linear system Ax = b:



Demo: LU factorization

Gaussian Elimination Algorithm
» Algorithm for factorization is derived from equations given by A = LU

» The computational complexity of LU is O(n?):



Existence of LU Factorization A=y

» The LU factorlzatlon may not exist: Consider matrix 6
| > %
t
? [ o} ["’”l q]ﬂ W_\\]
2

» Permutation of rows enables us to transform the matrix so the LU
factorization does exist:

PA:(_(A A\wo.uas 'U)“(A' {Q A— K3 Q'V(A un\(



. .. . . . . ) Demo: LU with Partial Pivoting
Gaussian Elimination with Partial Pivoting

» Partial pivoting permutes rows to make divisor u;; is maximal at each step:

> A row permutation corresponds to an application of a row permutation
matrix Py, = I — (e; — ex)(ej — ex)T:



Partial Pivoting Example

» Lets consider again the matrix A =

r
[ e e 4
RURECE @B’a}
R R
IR

|
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. . . + _
Complete Pivoting  nA%x= \o A=l oo P =lu
» Complete pivoting permutes rows and columns to make diviso
maximal at each step:

‘("Wf - T@ L, 1@%

> Complete pivoting is noticeably more expensive than partial pivoting:

| Q-Ll\ : [\“n,“m £ la“\

(7_" 0 (V\\ COW\()G-NSOAJ ‘Qu(' U(Ar C/Olv-wu/\
c/‘) W\’( \{L/\/v\r ,\,x ] Mﬂ O (V‘W\) (,br\v/u\/\ﬂ\-j ()(_r d‘,w\



Round-off Error in LU S\x+) = 2
> Lets consider factorization o%her@p W

—_—

O Ll L0

et IF

> Permutlng the rows of A in partial pivoting gives PA =

Y@KI\ uwl SV = I\ 11 e (‘e\
LR =TL O | A LA - [0&1




Error Analysis of LU

» The main source of round-off error in LU is in the computation of the Schur
complement:

| 9% Lo ! u”‘ %
/i‘f\ A /& { Lli u&
S'Mc g’n: va,('( n

> When computed in floating pomt absolute backward error § A in LU (so
LU =A+6A)is |5aw| < \L\ |U\)” -

I l N A WA
O e T€ U\I\‘R
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Helpful Matrix Properties i,l eV Hagl & 2 ey Z g \!

> Matrix is diagonally dominant, so Z#J laij| < Jagl: 1y
/ﬁ Z
SLic\r
» Matrix is symmetric positive definite (SPD), so vw;éo, T Ax > 0:
g\
CLal-! L A, (A\ -0 A= Y/\/&
A= I’L& ot oot }‘"V)' 150
» Matrix |ssymmetr|c but indefinite: T - z 1
x Dx = N
M= LPL o psor A= (ADW
> IVLatrlmsbanded aU_Olf|z—jl>b «rAk — T(A(D W x

%l & 1 o) T Zj/u*x



Demo: Sherman-Morrison

Solvin g Many Linear Systems Activity: Sherman-Morrison-Woodbury Formula

> Suppose we have computed A = LU and want to solve AX = B where B
isn x kwith k < n:

cp-g Ol R

C N 4+ Y\
> Suppose we have computed A = LU and now wan‘t/to solve a perturbed

system (A — uv?)x = b: N (A- Wty b
Can use the Sherman-Marrison-Woodbury formula

-1
A luvT A1 ~\ it A
Jr - i = A (3T ‘A"\
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