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Vector Norms

� Properties of vector norms

� A norm is uniquely defined by its unit sphere:

� p-norms

Demo: Vector Norms



Inner-Product Spaces
� Properties of inner-product spaces: Inner products �x,y� must satisfy

�x,x� ≥ 0

�x,x� = 0 ⇔ x = 0

�x,y� = �y,x�
�x,y + z� = �x,y�+ �x, z�

�αx,y� = α�x,y�

� Inner-product-based vector norms



Matrix Norms
� Properties of matrix norms:

||A|| ≥ 0

||A|| = 0 ⇔ A = 0

||αA|| = |α| · ||A||
||A+B|| ≤ ||A||+ ||B|| (triangle inequality)

� Frobenius norm:

� Operator/induced/subordinate matrix norms:

Demo: Matrix norms



Induced Matrix Norms
� Interpreting induced matrix norms:

� General induced matrix norms:



Matrix Condition Number
� Definition: κ(A) = ||A|| · ||A−1|| is the ratio between the shortest/longest

distances from the unit-ball center to any point on the surface.

� Intuitive derivation:

κ(A) = max
inputs

max
perturbations in input

����
relative perturbation in output
relative perturbation in input

����

since a matrix is a linear operator, we can decouple its action on the input x
and the perturbation δx since A(x+ δx) = Ax+Aδx, so

κ(A) =

�����������

||A||� �� �
max

perturbations in input
relative perturbation growth

max
inputs

relative input reduction
� �� �

1/||A−1||

�����������

Demo: Conditioning of 2x2 Matrices
Demo: Condition number visualized



Matrix Conditioning
� The matrix condition number κ(A) is the ratio between the max and min

distance from the surface to the center of the unit ball transformed by κ(A):

� The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product:



Norms and Conditioning of Orthogonal Matrices

� Orthogonal matrices:

� Norm and condition number of orthogonal matrices:



Singular Value Decomposition
� The singular value decomposition (SVD):



Norms and Conditioning via SVD
� Norm and condition number in terms of singular values:

Activity: Singular Value Decomposition and Norms



Visualization of Matrix Conditioning



Conditioning of Linear Systems
� Lets now return to formally deriving the conditioning of solvingAx = b:



Conditioning of Linear Systems II
� Consider perturbations to the input coe�cients Â = A+ δA:



Solving Basic Linear Systems

� Solve Dx = b if D is diagonal

� Solve Qx = b if Q is orthogonal

� Given SVD A = UΣV T , solve Ax = b



Solving Triangular Systems
� Lx = b if L is lower-triangular is solved by forward substitution:

l11x1 = b1 x1 =

l21x1 + l22x2 = b2 ⇒ x2 =

l31x1 + l32x2 + l33x3 = b3 x3 =

...
...

� Algorithm can also be formulated recursively by blocks:

Demo: Coding back-substitution



Solving Triangular Systems

� Existence of solution to Lx = b:

� Uniqueness of solution:

� Computational complexity of forward/backward substitution:



Properties of Triangular Matrices
� Z = XY is lower triangular isX and Y are both lower triangular:

� L−1 is lower triangular if it exists:



LU Factorization
� An LU factorization consists of a unit-diagonal lower-triangular factor L

and upper-triangular factorU such thatA = LU :

� Given an LU factorization ofA, we can solve the linear systemAx = b:



Gaussian Elimination Algorithm
� Algorithm for factorization is derived from equations given byA = LU :

� The computational complexity of LU is O(n3):

Demo: LU factorization



Existence of LU Factorization

� The LU factorization may not exist: Consider matrix



3 2
6 4
0 3


.

� Permutation of rows enables us to transform the matrix so the LU
factorization does exist:



Gaussian Elimination with Partial Pivoting
� Partial pivoting permutes rows to make divisor uii is maximal at each step:

� A row permutation corresponds to an application of a row permutation
matrix Pjk = I − (ej − ek)(ej − ek)

T :

Demo: LU with Partial Pivoting



Partial Pivoting Example

� Lets consider again the matrix A =



3 2
6 4
0 3


.



Complete Pivoting
� Complete pivoting permutes rows and columns to make divisor uii is

maximal at each step:

� Complete pivoting is noticeably more expensive than partial pivoting:



Round-o� Error in LU
� Lets consider factorization of

�
� 1
1 1

�
where � < �mach:

� Permuting the rows ofA in partial pivoting gives PA =

�
1 1
� 1

�



Error Analysis of LU
� The main source of round-o� error in LU is in the computation of the Schur

complement:

� When computed in floating point, absolute backward error δA in LU (so
L̂Û = A+ δA) is |δaij | ≤ �mach(|L̂| · |Û |)ij



Helpful Matrix Properties
� Matrix is diagonally dominant, so

�
i�=j |aij | ≤ |aii|:

� Matrix is symmetric positive definite (SPD), so ∀x�=0,x
TAx > 0:

� Matrix is symmetric but indefinite:

� Matrix is banded, aij = 0 if |i− j| > b:



Solving Many Linear Systems
� Suppose we have computedA = LU and want to solveAX = B whereB

is n× k with k < n:

� Suppose we have computedA = LU and now want to solve a perturbed
system (A− uvT )x = b:
Can use the Sherman-Morrison-Woodbury formula

(A− uvT )−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Demo: Sherman-Morrison
Activity: Sherman-Morrison-Woodbury Formula




