CS 450: Numerical Anlaysis¹ Linear Systems

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Vector Norms

Properties of vector norms

► A norm is uniquely defined by its unit sphere:

▶ p-norms

Inner-Product Spaces

Properties of inner-product spaces: Inner products $\langle x,y \rangle$ must satisfy

$$egin{aligned} \langle oldsymbol{x}, oldsymbol{x}
angle & \langle oldsymbol{x}, oldsymbol{x}
angle & 0 & \Leftrightarrow & oldsymbol{x} = oldsymbol{0} \\ \langle oldsymbol{x}, oldsymbol{y}
angle & = \langle oldsymbol{y}, oldsymbol{x}
angle \\ \langle oldsymbol{x}, oldsymbol{y} + oldsymbol{z}
angle & = \langle oldsymbol{x}, oldsymbol{y}
angle + \langle oldsymbol{x}, oldsymbol{z}
angle \\ \langle lpha oldsymbol{x}, oldsymbol{y}
angle & = \langle oldsymbol{x}, oldsymbol{y}
angle + \langle oldsymbol{x}, oldsymbol{z}
angle \\ \langle lpha oldsymbol{x}, oldsymbol{y}
angle & = \langle oldsymbol{x}, oldsymbol{y}
angle + \langle oldsymbol{x}, oldsymbol{z}
angle \\ \langle lpha oldsymbol{x}, oldsymbol{y}
angle & = \langle oldsymbol{x}, oldsymbol{y}
angle + \langle oldsymbol{x}, oldsymbol{z}
angle \end{aligned}$$

Inner-product-based vector norms

Matrix Norms

Properties of matrix norms:

```
\begin{aligned} ||\boldsymbol{A}|| &\geq 0 \\ ||\boldsymbol{A}|| &= 0 &\Leftrightarrow \boldsymbol{A} = \boldsymbol{0} \\ ||\alpha \boldsymbol{A}|| &= |\alpha| \cdot ||\boldsymbol{A}|| \\ ||\boldsymbol{A} + \boldsymbol{B}|| &\leq ||\boldsymbol{A}|| + ||\boldsymbol{B}|| \quad \textit{(triangle inequality)} \end{aligned}
```

- ► Frobenius norm:
- Operator/induced/subordinate matrix norms:

Induced Matrix Norms

► Interpreting induced matrix norms:

General induced matrix norms:

Matrix Condition Number

- ▶ **Definition**: $\kappa(A) = ||A|| \cdot ||A^{-1}||$ is the ratio between the shortest/longest distances from the unit-ball center to any point on the surface.
- ▶ Intuitive derivation:

$$\kappa(\boldsymbol{A}) = \max_{\text{inputs}} \quad \max_{\text{perturbations in input}} \left| \frac{\text{relative perturbation in output}}{\text{relative perturbation in input}} \right|$$

since a matrix is a linear operator, we can decouple its action on the input x and the perturbation δx since $A(x+\delta x)=Ax+A\delta x$, so

$$\kappa(\boldsymbol{A}) = \frac{\max\limits_{\substack{\text{perturbations in input}}} \frac{\text{relative perturbation growth}}{\max\limits_{\substack{\text{inputs}}} \text{relative input reduction}}}{\sum_{\substack{1/||\boldsymbol{A}^{-1}||}}$$

Matrix Conditioning

▶ The matrix condition number $\kappa(A)$ is the ratio between the max and min distance from the surface to the center of the unit ball transformed by $\kappa(A)$:

► The matrix condition number bounds the worst-case amplification of error in a matrix-vector product:

Norms and Conditioning of Orthogonal Matrices

Orthogonal matrices:

Norm and condition number of orthogonal matrices:

Singular Value Decomposition

► The singular value decomposition (SVD):

Norms and Conditioning via SVD

Activity: Singular Value Decomposition and Norms

Norm and condition number in terms of singular values:

Visualization of Matrix Conditioning

Conditioning of Linear Systems

Lets now return to formally deriving the conditioning of solving Ax = b:

Conditioning of Linear Systems II

lacktriangle Consider perturbations to the input coefficients $\hat{A}=A+\delta A$:

Solving Basic Linear Systems

▶ Solve Dx = b if D is diagonal

lacksquare Solve $m{Q}m{x}=m{b}$ if $m{Q}$ is orthogonal

lacksquare Given SVD $m{A} = m{U}m{\Sigma}m{V}^T$, solve $m{A}m{x} = m{b}$

Solving Triangular Systems

ightharpoonup Lx = b if L is lower-triangular is solved by forward substitution:

$$\begin{array}{cccc} l_{11}x_1 = b_1 & & x_1 = \\ l_{21}x_1 + l_{22}x_2 = b_2 & \Rightarrow & x_2 = \\ l_{31}x_1 + l_{32}x_2 + l_{33}x_3 = b_3 & & x_3 = \\ & \vdots & & \vdots & & \vdots \end{array}$$

Algorithm can also be formulated recursively by blocks:

Solving Triangular Systems

Existence of solution to Lx = b:

Uniqueness of solution:

Computational complexity of forward/backward substitution:

Properties of Triangular Matrices

ightharpoonup Z = XY is lower triangular is X and Y are both lower triangular:

▶ L^{-1} is lower triangular if it exists:

LU Factorization

An *LU factorization* consists of a unit-diagonal lower-triangular *factor* L and upper-triangular factor U such that A = LU:

lacktriangle Given an LU factorization of A, we can solve the linear system Ax=b:

Gaussian Elimination Algorithm

▶ Algorithm for factorization is derived from equations given by A = LU:

▶ The computational complexity of LU is $O(n^3)$:

Existence of LU Factorization

tence of LU Factorization
$$A = Lu$$

The LU factorization may not exist: Consider matrix $\begin{bmatrix} 3 & 2 \\ 6 & 4 \\ 0 & 3 \end{bmatrix}$.

Permutation of rows enables us to transform the matrix so the LU factorization does exist:

Gaussian Elimination with Partial Pivoting

Partial pivoting permutes rows to make divisor u_{ii} is maximal at each step:

A row permutation corresponds to an application of a row permutation matrix $P_{jk} = I - (e_j - e_k)(e_j - e_k)^T$:

Partial Pivoting Example

PA=LU ac PAPZ =LU Complete Pivoting nARx = 6 **Complete pivoting** permutes rows and columns to make divisor u_{ii} is

maximal at each step:

$$P_{1}AP_{2}^{T} = Lu \qquad |e_{15}| \leq 1$$

$$P_{1}AP_{2}^{T} = \int_{C_{10}}^{d_{10}} L_{21} \int_{C_{10}}^{d_{10$$

Complete pivoting is noticeably more expensive than partial pivoting:

Round-off Error in LU **Lets** consider factorization of $\begin{bmatrix} \epsilon & 1 \\ 1 & 1 \end{bmatrix}$ where $\epsilon < \epsilon_{\mathsf{mach}}$

Lifl(n) = [= 1+e] A-Lifl(n) = [00]

muting the rows of
$$A$$
 in partial pivoting gives $PA = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

Error Analysis of LU

The main source of round-off error in LU is in the computation of the Schur complement:

When computed in floating point, absolute backward error δA in LU (so $\hat{L}\hat{U} = A + \delta A$) is $|\delta a_{ij}| < \widehat{mack}(|\hat{L}| \cdot |\hat{U}|)_{ij}$

Matrix is symmetric but indefinite:

Matrix is symmetric but indefinite:

$$A = A^{T}$$

$$A = A^{T}$$

$$A = A^{T}$$

$$A = A^{T}$$
Matrix is banded, $a_{ij} = 0$ if $|i - j| > b$:
$$A = A^{T}$$

$$A$$

Solving Many Linear Systems

ystems Demo: Sherman-Morrison Activity: Sherman-Morrison-Woodbury Formula

Suppose we have computed A = LU and want to solve AX = B where B

system $(A - uv^T)x = b$:
Can use the <u>Sherman-Morrison-Woodbury</u> formula

$$A^{T}A \times = A^{T}b$$

$$E(A)^{T} = E(A^{T}A)$$

Cholenty (ATA)

JAAX = q y > 0