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"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



Linear Least Squares

» Find o* = argmin cpn ||Ax — b||2 where A € R™*":

> Giventhe SVD A = UXVT we have * = VXIUTb, where X1 contains the
reciprocal of all nonzeros in X:



Demo: Polynomial fitting via the normal equations

Conditioning of Linear Least Squares
» Consider fitting a line to a collection of points, then perturbing the points:

» LLSis ill-posed for any A, unless we consider solving for a particular b



. Demo: Normal equations vs Pseudoinverse
Normal E quations Demo: Issues with the normal equations

» Normal equations are given by solving AT Az = ATb:

» However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm



Solving the Normal Equations
> If Ais full-rank, then AT A is symmetric positive definite (SPD):

» Since AT A is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:
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QR Factorization

» If A is full-rank there exists an orthogonal matrix Q and a unique
upper-triangular matrix R with a positive diagonal such that A = QR

» A reduced QR factorization (unique part of general QR) is defined so that
Q € R™*™ has orthonormal columns and R is square and upper-triangular

I
> We can solve the normal equations (and consequently the linear least AéR
squares problem) via reduced QR as follows A ael CQTAx 6' b 0(,&
- Rx SRS



Gram-Schmidt Qrthogonalizati

» Classical Gram-Schmidt process for QR:
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» Modified Gram-Schmidt process for QR:
Q)

Demo: Gram-Schmidt-The Movie
Demo Gram-Schmidt and Modified Gram-Schmidt
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Demo: 3x3 Householder demo

Householder QR Factorization Mes/ees
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N A Activity: Householder QR
Applying Householder Transformations

» The product = Qw can be computed using O(n) operations if Q is a
Householder transformation

» Householder transformations are also called reflectors because their
application reflects a vector along a hyperplane (changes sign of component
of w that is parallel to u)



Givens Rotations
» Householder reflectors reflect vectors, Givens rotations rotate them

> Givens rotations are defined by orthogonal matrices of the form [_CS ’Z]



Demo: Relative cost of matrix factorizations

QR via Givens Rotations

» We can apply a Givens rotation to a pair of matrix rows, to eliminate the first
nonzero entry of the second row

» Thus, n(n — 1)/2 Givens rotations are needed for QR of a square matrix



Activity: Rank Deficient Least Squares Problems

Rank-Deficient Least Squares

> Suppose we want to solve a linear system or least squares problem with a
(nearly) rank deficient matrix A

» Rank-deficient least squares problems seek a minimizer x of ||Ax — b|| of
minimal norm ||z||2



Demo: Image compression

Truncated SVD

> After floating-point rounding, rank-deficient matrices typically regain
full-rank but have nonzero singular values on the order of €machomax

» By the Eckart-Young-Mirsky theorem, truncated SVD also provides the best
low-rank approximation of a matrix (in 2-norm and Frobenius norm)



QR with Column Pivoting

» QR with column pivoting provides a way to approximately solve
rank-deficient least squares problems and compute the truncated SVD

> A pivoted QR factorization can be used to compute a rank-r approximation



