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Eigenvalues and Eigenvectors
� A matrix A has eigenvector-eigenvalue pair (eigenpair) (λ,x) if

� Each n× n matrix has up to n eigenvalues, which are either real or complex



Eigenvalue Decomposition
� If a matrix A is diagonalizable, it has an eigenvalue decomposition

� A and B are similar, if there exist Z such that A = ZBZ−1



Similarity of Matrices

matrix similarity reduced form
SPD

real symmetric

Hermitian
normal

real
diagonalizable

arbitrary



Canonical Forms
� Any matrix is similar to a bidiagonal matrix, giving its Jordan form:

� Any diagonalizable matrix is unitarily similar to a triangular matrix, giving its
Schur form:



Eigenvectors from Schur Form

� Given the eigenvectors of one matrix, we seek those of a similar matrix:

� Its easy to obtain eigenvectors of triangular matrix T :

Activity: Calculating Eigenpairs of a Triangular Matrix



Rayleigh Quotient
� For any vector x, the Rayleigh quotient provides an estimate for some

eigenvalue of A:



Perturbation Analysis of Eigenvalue Problems
� Suppose we seek eigenvalues D = X−1AX, but find those of a slightly

perturbed matrix D + δD = X̂−1(A+ δA)X̂:

� Gershgorin’s theorem allows us to bound the e�ect of the perturbation on
the eigenvalues of a (diagonal) matrix:
Given a matrix A ∈ Rn×n, let ri =

�
j �=i |aij |, define the Gershgorin disks as

Di = {z ∈ C : |z − aii| ≤ ri}.



Gershgorin Theorem Perturbation Visualization

� Top corresponds to Gershgorin disks on complex plane of 4-by-4 real matrix.
� Bottom part corresponds to bounds on Gershgorin disks of X−1(A+ δA)X,

which contain the eigenvalues D of A and the perturbed eigenvalues
D + δD of A+ δA provided that ||δA|| is su�ciently small.



Conditioning of Particular Eigenpairs
� Consider the e�ect of a matrix perturbation on an eigenvalue λ associated

with a right eigenvector x and a left eigenvector y, λ = yHAx/yHx

� A more accurate eigenvalue approximation than Rayleigh quotient for a
normalized perturbed eigenvector (e.g., iterative guess) x̂ = x+ δx, can be
obtained with an estimate of both eigenvectors (also ŷ = y + δy),



Power Iteration
� Power iteration can be used to compute the largest eigenvalue of a real

symmetric matrix A:

� The error of power iteration decreases at each step by the ratio of the
largest eigenvalues:

Demo: Power iteration and its Variants



Inverse and Rayleigh Quotient Iteration
� Inverse iteration uses LU/QR/SVD of A to run power iteration on A−1

� Rayleigh quotient iteration provides rapid convergence to an eigenpair

Activity: Inverse Iteration with a Shift
Activity: Rayleigh Quotient Iteration



Deflation
� Power, inverse, and Rayleigh-quotient iteration compute a single eigenpair,

to obtain further eigenpairs, can perform deflation



Direct Matrix Reductions
� We can always compute an orthogonal similarity transformation to reduce a

general matrix to upper-Hessenberg (upper-triangular plus the first
subdiagonal) matrix H , i.e. A = QHQT :

� In the symmetric case, Hessenberg form implies tridiagonal:

Demo: Householder Similarity Transforms



Simultaneous and Orthogonal Iteration
� Simultaneous iteration provides the main idea for computing many

eigenvectors at once:

� Orthogonal iteration performs QR at each step to ensure stability

Demo: Orthogonal Iteration
Activity: Orthogonal Iteration



QR Iteration
� QR iteration reformulates orthogonal iteration for n = k to reduce cost/step,

� Using induction, we assume Ai = Q̂
T
i AQ̂i and show that QR iteration

obtains Ai+1 = Q̂
T
i+1AQ̂i+1



QR Iteration with Shift
� QR iteration can be accelerated using shifting:

� The shift is typically selected to accelerate convergence with respect to a
particular eigenvalue:

Activity: QR Iteration



QR Iteration Complexity
� QR iteration is accelerated by first reducing to upper-Hessenberg or

tridiagonal form:



Solving Tridiagonal Symmetric Eigenproblems
A variety of methods exists for the tridiagonal eigenproblem:
� QR iteration

� Divide and conquer



Solving the Secular Equation for Divide and Conquer
To solve the eigenproblem at each step, the divide and conquer method needs to
diagonalize a rank-1 perturbation of a diagonal matrix

A = D + αuuT .



Introduction to Krylov Subspace Methods
� Krylov subspace methods work with information contained in the n× k matrix

Kk =
�
x0 Ax0 · · · Ak−1x0

�

� The matrix K−1
n AKn is a companion matrix C:



Krylov Subspaces
� Given QkRk = Kk, we obtain an orthonormal basis for the Krylov subspace,

Kk(A,x0) = span(Qk) = {p(A)x0 : deg(p) < k},
where p is any polynomial of degree less than k.

� The Krylov subspace includes the k − 1 approximate dominant eigenvectors
generated by k − 1 steps of power iteration:



Krylov Subspace Methods
� The k × k matrix Hk = QT

kAQk minimizes ||AQk −QkHk||2:

� Hk is Hessenberg, because the companion matrix Ck is Hessenberg:



Rayleigh-Ritz Procedure

� The eigenvalues/eigenvectors of Hk are the Ritz values/vectors:

� The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only Hk and Qk:

Demo: Arnoldi vs Power Iteration
Activity: Computing the Maximum Ritz Value



Arnoldi Iteration
� Arnoldi iteration computes H = Hn directly using the recurrence

qTi Aqj = hij , where ql is the lth column of Qn:

� After each matrix-vector product, orthogonalization is done with respect to
each previous vector:

Demo: Arnoldi Iteration
Demo: Arnoldi Iteration with Complex Eigenvalues



Lanczos Iteration
� Lanczos iteration provides a method to reduce a symmetric matrix to a

tridiagonal matrix:

� After each matrix-vector product, it su�ces to orthogonalize with respect to
two previous vectors:

Activity: Approximation with Orthogonal Iteration and Lanczos



Cost Krylov Subspace Methods
� The cost of matrix-vector multiplication when the matrix has m nonzeros

� The cost of orthogonalization at the kth iteration of a Krylov subspace
method is



Restarting Krylov Subspace Methods
� In finite precision, Lanczos generally loses orthogonality, while

orthogonalization in Arnoldi can become prohibitively expensive:

� Consequently, in practice, low-dimensional Krylov subspace methods are
constructed repeatedly using carefully selected new starting vectors:



Generalized Eigenvalue Problem
� A generalized eigenvalue problem has the form Ax = λBx,

� When A and B are symmetric and B is SPD, we can perform Cholesky on B,
multiply A by the inverted factors, and diagonalize it:

� Alternative canonical forms and methods exist that are specialized to the
generalized eigenproblem.


