# CS 450: Numerical Anlaysis ${ }^{1}$ 

## Eigenvalue Problems

University of Illinois at Urbana-Champaign

[^0]Eigenvalues and Eigenvectors

- A matrix $\boldsymbol{A}$ has eigenvector-eigenvalue pair (eigenpair) $(\underline{\lambda}, \boldsymbol{x})$ if

$$
\begin{aligned}
& A x=\lambda x \\
& \text { - } \alpha x \text { is also an eigenvector } \\
& \text { when ' }=\text { ', then the } \\
& \text { mathis is' diagonalizable, } \\
& \text { - } \lambda, \quad X \subseteq R^{n}, \quad x \in X, \quad A x=\lambda_{x}^{\text {otherwise, it is defective }} \\
& \text { Teigenspace, } \operatorname{dim}(x)^{\prime} \leq \text { multiplicity of } \lambda
\end{aligned}
$$

Each $n \times n$ matrix has up to $n$ eigenvalues, which are either real or complex

- if we have $\lambda=a+b i$ even if the matrix is real
then we also have $\lambda=a-b:$
- fur diagunclinable mitries, $\begin{array}{lll}\lambda_{1} \ldots \lambda_{k} \\ x_{1} \ldots X_{k}\end{array} \quad \sum_{i=1}^{1} \operatorname{dim}\left(X_{i}\right)=\underbrace{\operatorname{dim}(A)}_{n}$

Eigenvalue Decomposition $A^{\pi}=A_{1}^{\mu}=X^{-1} X_{i}=e_{i}$, De $e_{i}=\lambda_{i}$ :

- If a matrix $\boldsymbol{A}$ is diagonalizable, it has an eigenvalue decomposition

$$
\begin{aligned}
& \boldsymbol{A} \text { and } B \text { are similar, if there exist } Z \text { such that } \boldsymbol{A}=\boldsymbol{Z} \boldsymbol{B} \boldsymbol{Z}^{-1} \\
& 23:=(2+3 i)^{2}
\end{aligned}
$$

Similarity of Matrices


Canonical Forms

- Any matrix is similar to a bidiagonal matrix, giving its Jordan form:
- Any diagonalizable matrix is unitarily similar to a triangular matrix, giving its Schur form:

$$
A=Q \stackrel{Q^{\downarrow} Q^{\text {triarpilar }}}{\substack{H \\ \text { unitary }}}
$$



Eigenvectors from Schur Form
Given the eigenvectors of one matrix, we seek those of a similar matrix:

$$
\begin{array}{ll}
T_{x}=\lambda x & A=Q D Q^{N} \\
T=X D X^{-1} & \operatorname{ergracs}(A)=Q X
\end{array}
$$

Its easy to obtain eigenvectors of triangular matrix $T$ :

$$
\begin{aligned}
& {\left[\begin{array}{c}
f_{11} \\
0 \\
\vdots \\
0
\end{array}\right]=\sqrt{1}\left[\begin{array}{l}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad A_{x}-\lambda x} \\
& 0=\left(A_{x} \lambda_{x}\right)=(A-\lambda I) x
\end{aligned}
$$

Rayleigh Quotient

$$
\lambda_{0}=\|A v\| /\|v\|
$$

For any vector $x$, the Rayleigh quotient provides and estimate for some

$$
\begin{aligned}
& \text { eigenvalue of } A \text { : } \\
& \rho_{A}(x)=\frac{x^{\top} A x}{x^{\top} x} \\
& A v=\lambda v \text { eigenpur }(\lambda, v) \\
& \rho_{A}(v)=\lambda, \quad \rho_{A}(\alpha v)=\lambda \\
& \left\{\rho: \rho=\rho_{A}(t) \quad \forall x \in R^{n}\right\} \rightarrow \text { field of values } \\
& \leq\left|\sigma_{\max }\right|
\end{aligned}
$$

$y=A x, \rho_{A}(t)$ is a good estimte of the eqence assocsald w...l a vector near $x$, since its the


Perturbation Analysis of Eigenvalue Problems

- Suppose we seek eigenvalues $\boldsymbol{D}=\boldsymbol{X}^{-1} \boldsymbol{A} \boldsymbol{X}$, but find those of a slightly perturbed matrix $D+\delta D=\hat{X}^{-1}(A+\delta A) \hat{X}$ :

$$
\begin{aligned}
& x^{-1}(A+S A) x=D+x^{-1} \delta A x=\left[\frac{\varepsilon_{2}}{n_{2}}\right] \\
& \left\|x^{-1} \delta A x\right\| \leq\left\|x^{-1}\right\| \cdot\|\delta A\| \cdot\|x\|=r(x)\|\delta A\|
\end{aligned}
$$

Gershgorin's theorem allows us to bound the effect of the perturbation on the eigenvalues of a (diagonal) matrix:
Given a matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, let $r_{i}=\sum_{j \neq i}\left|a_{i j}\right|$, define the Gershgorin disks as


$$
D_{i}=\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq r_{i}\right\} .
$$




## Gershgorin Theorem Perturbation Visualization



- Top corresponds to Gershgorin disks on complex plane of 4-by-4 real matrix.
- Bottom part corresponds to bounds on Gershgorin disks of $\boldsymbol{X}^{-1}(\boldsymbol{A}+\boldsymbol{\delta} \boldsymbol{A}) \boldsymbol{X}$, which contain the eigenvalues $\boldsymbol{D}$ of $\boldsymbol{A}$ and the perturbed eigenvalues $D+\delta D$ of $\boldsymbol{A}+\boldsymbol{\delta} \boldsymbol{A}$ provided that $\|\boldsymbol{\delta} \boldsymbol{A}\|$ is sufficiently small.


## Conditioning of Particular Eigenpairs

- Consider the effect of a matrix perturbation on an eigenvalue $\lambda$ associated with a right eigenvector $\boldsymbol{x}$ and a left eigenvector $\boldsymbol{y}, \lambda=\boldsymbol{y}^{H} \boldsymbol{A} \boldsymbol{x} / \boldsymbol{y}^{H} \boldsymbol{x}$
- A more accurate eigenvalue approximation than Rayleigh quotient for a normalized perturbed eigenvector (e.g., iterative guess) $\hat{\boldsymbol{x}}=\boldsymbol{x}+\boldsymbol{\delta} \boldsymbol{x}$, can be obtained with an estimate of both eigenvectors (also $\hat{\boldsymbol{y}}=\boldsymbol{y}+\boldsymbol{\delta} \boldsymbol{y}$ ),


## Power Iteration

- Power iteration can be used to compute the largest eigenvalue of a real symmetric matrix $A$ :
- The error of power iteration decreases at each step by the ratio of the largest eigenvalues:


## Inverse and Rayleigh Quotient Iteration

- Inverse iteration uses LU/QR/SVD of $\boldsymbol{A}$ to run power iteration on $\boldsymbol{A}^{-1}$
- Rayleigh quotient iteration provides rapid convergence to an eigenpair


## Deflation

- Power, inverse, and Rayleigh-quotient iteration compute a single eigenpair, to obtain further eigenpairs, can perform deflation


## Direct Matrix Reductions

- We can always compute an orthogonal similarity transformation to reduce a general matrix to upper-Hessenberg (upper-triangular plus the first subdiagonal) matrix $\boldsymbol{H}$, i.e. $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{H} \boldsymbol{Q}^{T}$ :
- In the symmetric case, Hessenberg form implies tridiagonal:


## Simultaneous and Orthogonal Iteration

- Simultaneous iteration provides the main idea for computing many eigenvectors at once:
- Orthogonal iteration performs QR at each step to ensure stability


## QR Iteration

- QR iteration reformulates orthogonal iteration for $n=k$ to reduce cost/step,
- Using induction, we assume $\boldsymbol{A}_{i}=\hat{\boldsymbol{Q}}_{i}^{T} \boldsymbol{A} \hat{Q}_{i}$ and show that QR iteration obtains $\boldsymbol{A}_{i+1}=\hat{\boldsymbol{Q}}_{i+1}^{T} \boldsymbol{A} \hat{\boldsymbol{Q}}_{i+1}$


## QR Iteration with Shift

- QR iteration can be accelerated using shifting:
- The shift is typically selected to accelerate convergence with respect to a particular eigenvalue:


## QR Iteration Complexity

- QR iteration is accelerated by first reducing to upper-Hessenberg or tridiagonal form:


## Solving Tridiagonal Symmetric Eigenproblems

A variety of methods exists for the tridiagonal eigenproblem:

- QR iteration
- Divide and conquer


## Solving the Secular Equation for Divide and Conquer

To solve the eigenproblem at each step, the divide and conquer method needs to diagonalize a rank-1 perturbation of a diagonal matrix

$$
\boldsymbol{A}=\boldsymbol{D}+\alpha \boldsymbol{u} \boldsymbol{u}^{T}
$$

## Introduction to Krylov Subspace Methods

- Krylov subspace methods work with information contained in the $n \times k$ matrix

$$
\boldsymbol{K}_{k}=\left[\begin{array}{llll}
\boldsymbol{x}_{\mathbf{0}} & \boldsymbol{A} \boldsymbol{x}_{\mathbf{0}} & \cdots & \boldsymbol{A}^{k-1} \boldsymbol{x}_{\mathbf{0}}
\end{array}\right]
$$

- The matrix $\boldsymbol{K}_{n}^{-1} \boldsymbol{A} \boldsymbol{K}_{n}$ is a companion matrix $\boldsymbol{C}$ :


## Krylov Subspaces

- Given $\boldsymbol{Q}_{k} \boldsymbol{R}_{k}=\boldsymbol{K}_{k}$, we obtain an orthonormal basis for the Krylov subspace,

$$
\mathcal{K}_{k}\left(\boldsymbol{A}, \boldsymbol{x}_{0}\right)=\operatorname{span}\left(\boldsymbol{Q}_{k}\right)=\left\{p(\boldsymbol{A}) \boldsymbol{x}_{0}: \operatorname{deg}(p)<k\right\},
$$

where $p$ is any polynomial of degree less than $k$.

- The Krylov subspace includes the $k-1$ approximate dominant eigenvectors generated by $k-1$ steps of power iteration:


## Krylov Subspace Methods

- The $k \times k$ matrix $\boldsymbol{H}_{k}=\boldsymbol{Q}_{k}^{T} \boldsymbol{A} \boldsymbol{Q}_{k}$ minimizes $\left\|\boldsymbol{A} \boldsymbol{Q}_{k}-\boldsymbol{Q}_{k} \boldsymbol{H}_{k}\right\|_{2}$ :
- $\boldsymbol{H}_{k}$ is Hessenberg, because the companion matrix $\boldsymbol{C}_{k}$ is Hessenberg:


## Rayleigh-Ritz Procedure

- The eigenvalues/eigenvectors of $\boldsymbol{H}_{k}$ are the Ritz values/vectors:
- The Ritz vectors and values are the ideal approximations of the actual eigenvalues and eigenvectors based on only $\boldsymbol{H}_{k}$ and $\boldsymbol{Q}_{k}$ :


## Arnoldi Iteration

- Arnoldi iteration computes $\boldsymbol{H}=\boldsymbol{H}_{n}$ directly using the recurrence $\boldsymbol{q}_{i}^{T} \boldsymbol{A} \boldsymbol{q}_{j}=h_{i j}$, where $\boldsymbol{q}_{l}$ is the $l$ th column of $\boldsymbol{Q}_{n}$ :
- After each matrix-vector product, orthogonalization is done with respect to each previous vector:


## Lanczos Iteration

- Lanczos iteration provides a method to reduce a symmetric matrix to a tridiagonal matrix:
- After each matrix-vector product, it suffices to orthogonalize with respect to two previous vectors:


## Cost Krylov Subspace Methods

- The cost of matrix-vector multiplication when the matrix has $m$ nonzeros
- The cost of orthogonalization at the $k$ th iteration of a Krylov subspace method is


## Restarting Krylov Subspace Methods

- In finite precision, Lanczos generally loses orthogonality, while orthogonalization in Arnoldi can become prohibitively expensive:
- Consequently, in practice, low-dimensional Krylov subspace methods are constructed repeatedly using carefully selected new starting vectors:


## Generalized Eigenvalue Problem

- A generalized eigenvalue problem has the form $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{B} \boldsymbol{x}$,
- When $\boldsymbol{A}$ and $\boldsymbol{B}$ are symmetric and $\boldsymbol{B}$ is SPD, we can perform Cholesky on $\boldsymbol{B}$, multiply $\boldsymbol{A}$ by the inverted factors, and diagonalize it:
- Alternative canonical forms and methods exist that are specialized to the generalized eigenproblem.


[^0]:    ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

