CS 450: Numerical Anlaysis¹ Eigenvalue Problems

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Eigenvalues and Eigenvectors

lacktriangle A matrix $m{A}$ has eigenvector-eigenvalue pair (eigenpair) $(\lambda, m{x})$ if

$$\frac{A \times = \lambda \times}{A \times = \lambda \times}$$
 when '=' then the matrix is diagonalizable, atterwise, it is defective
$$\frac{A \times = \lambda \times}{A \times = \lambda \times}$$
 Teigenspace, $\dim(x) \subseteq \operatorname{multiplicity} A$
Each $n \times n$ matrix has up to n eigenvalues, which are either real or complex

 \blacktriangleright Each $n \times n$ matrix has up to n eigenvalues, which are either real or complex

· if we have
$$\lambda = a + bi$$
 oven if the media is real

Then we also have 1 = a - 6? · for desquelocable meterous, I, ... Ik & dim(X) = dim(A)

Similarity of Matrices

	A	B=2A2"	B
real	matrix	similarity	reduced form
Symmetric	positive du SPD	o Mogo ral	diagonal, positive 1000
λ> o	real symmetric	orthogonal	real tribiagonal [
		ď	real diagonal
A" =	Hermitian	unitary	real diagonal
A"L = AA"	normal	unitary	diagonal
	real	orthogonal	real Hessenbery []
-	diagonalizable	invertible	diagona
-	arbitrary	unitary	triangular (Schur form)
		invertible	bidiagonal (Souther normal
			form

Canonical Forms

Any matrix is *similar* to a bidiagonal matrix, giving its *Jordan form*:

$$A = X \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix}$$

Any diagonalizable matrix is *unitarily similar* to a triangular matrix, giving its *Schur form*:

Eigenvectors from Schur Form

Form Activity: Calculating Eigenpairs of a Triangular Matrix

$$T_{x=\lambda x}$$
 $A = 0.00^{M}$
 $T = x0x^{-1}$ enques (A) = QX

► Its easy to obtain eigenvectors of triangular matrix *T*:

Given the eigenvectors of one matrix, we seek those of a similar matrix:

Rayleigh Quotient

► For any vector
$$x$$
, eigenvalue of A :

Eb: beboom Axery -> tield of repres

Perturbation Analysis of Eigenvalue Problems

Suppose we seek eigenvalues $D = X^{-1}AX$, but find those of a slightly perturbed matrix $D + \delta D + \hat{X}^{-1}(A + \delta A)\hat{X}$:

Gershgorin's theorem allows us to bound the effect of the perturbation on the eigenvalues of a (diagonal) matrix:

Given a matrix $m{A} \in \mathbb{R}^{n imes n}$, let $r_i = \sum_{j
eq i} |a_{ij}|$, define the Gershgorin disks as

Gershgorin Theorem Perturbation Visualization

- ► Top corresponds to Gershgorin disks on complex plane of 4-by-4 real matrix.
- ▶ Bottom part corresponds to bounds on Gershgorin disks of $X^{-1}(A + \delta A)X$, which contain the eigenvalues D of A and the perturbed eigenvalues $D + \delta D$ of $A + \delta A$ provided that $||\delta A||$ is sufficiently small.

Conditioning of Particular Eigenpairs

Consider the effect of a matrix perturbation on an eigenvalue λ associated with a right eigenvector x and a left eigenvector y, $\lambda = y^H A x / y^H x$

A more accurate eigenvalue approximation than Rayleigh quotient for a normalized perturbed eigenvector (e.g., iterative guess) $\hat{x} = x + \delta x$, can be obtained with an estimate of both eigenvectors (also $\hat{y} = y + \delta y$),

Power Iteration

▶ *Power iteration* can be used to compute the largest eigenvalue of a real symmetric matrix *A*:

► The error of power iteration decreases at each step by the ratio of the largest eigenvalues:

Inverse and Rayleigh Quotient Iteration

Activity: Inverse Iteration with a Shift Activity: Rayleigh Ouotient Iteration

▶ Inverse iteration uses LU/QR/SVD of A to run power iteration on A^{-1}

Rayleigh quotient iteration provides rapid convergence to an eigenpair

Deflation

Power, inverse, and Rayleigh-quotient iteration compute a single eigenpair, to obtain further eigenpairs, can perform deflation

Direct Matrix Reductions

We can always compute an orthogonal similarity transformation to reduce a general matrix to *upper-Hessenberg* (upper-triangular plus the first subdiagonal) matrix H, i.e. $A = QHQ^T$:

▶ In the symmetric case, Hessenberg form implies tridiagonal:

Simultaneous and Orthogonal Iteration

Demo: Orthogonal Iteration **Activity:** Orthogonal Iteration

Simultaneous iteration provides the main idea for computing many eigenvectors at once:

Orthogonal iteration performs QR at each step to ensure stability

QR Iteration

▶ QR iteration reformulates orthogonal iteration for n = k to reduce cost/step,

▶ Using induction, we assume $A_i = \hat{Q}_i^T A \hat{Q}_i$ and show that QR iteration obtains $A_{i+1} = \hat{Q}_{i+1}^T A \hat{Q}_{i+1}$

QR Iteration with Shift

▶ QR iteration can be accelerated using shifting:

► The shift is typically selected to accelerate convergence with respect to a particular eigenvalue:

QR Iteration Complexity

QR iteration is accelerated by first reducing to upper-Hessenberg or tridiagonal form:

Solving Tridiagonal Symmetric Eigenproblems

A variety of methods exists for the tridiagonal eigenproblem:

- QR iteration
- ▶ Divide and conquer

Solving the Secular Equation for Divide and Conquer

To solve the eigenproblem at each step, the divide and conquer method needs to diagonalize a rank-1 perturbation of a diagonal matrix

$$\boldsymbol{A} = \boldsymbol{D} + \alpha \boldsymbol{u} \boldsymbol{u}^T.$$

Introduction to Krylov Subspace Methods

 \blacktriangleright Krylov subspace methods work with information contained in the $n \times k$ matrix

$$oldsymbol{K}_k = egin{bmatrix} oldsymbol{x_0} & oldsymbol{Ax_0} & \cdots & oldsymbol{A}^{k-1}oldsymbol{x_0} \end{bmatrix}$$

▶ The matrix $K_n^{-1}AK_n$ is a *companion matrix C*:

Krylov Subspaces

ightharpoonup Given $oldsymbol{Q}_k oldsymbol{R}_k = oldsymbol{K}_k$, we obtain an orthonormal basis for the Krylov subspace,

$$\mathcal{K}_k(\boldsymbol{A}, \boldsymbol{x}_0) = span(\boldsymbol{Q}_k) = \{p(\boldsymbol{A})\boldsymbol{x}_0 : deg(p) < k\},\$$

where p is any polynomial of degree less than k.

▶ The Krylov subspace includes the k-1 approximate dominant eigenvectors generated by k-1 steps of power iteration:

Krylov Subspace Methods

► The $k \times k$ matrix $H_k = Q_k^T A Q_k$ minimizes $||AQ_k - Q_k H_k||_2$:

lackbox $oldsymbol{H}_k$ is Hessenberg, because the companion matrix $oldsymbol{C}_k$ is Hessenberg:

Rayleigh-Ritz Procedure

Demo: Arnoldi vs Power Iteration **Activity:** Computing the Maximum Ritz Value

ightharpoonup The eigenvalues/eigenvectors of H_k are the Ritz values/vectors:

The Ritz vectors and values are the *ideal approximations* of the actual eigenvalues and eigenvectors based on only H_k and Q_k :

▶ Arnoldi iteration computes $H = H_n$ directly using the recurrence $q_i^T A q_j = h_{ij}$, where q_l is the lth column of Q_n :

After each matrix-vector product, orthogonalization is done with respect to each previous vector:

Lanczos Iteration

► Lanczos iteration provides a method to reduce a symmetric matrix to a tridiagonal matrix:

After each matrix-vector product, it suffices to orthogonalize with respect to two previous vectors:

Cost Krylov Subspace Methods

ightharpoonup The cost of matrix-vector multiplication when the matrix has m nonzeros

ightharpoonup The cost of orthogonalization at the kth iteration of a Krylov subspace method is

Restarting Krylov Subspace Methods

► In finite precision, Lanczos generally loses orthogonality, while orthogonalization in Arnoldi can become prohibitively expensive:

Consequently, in practice, low-dimensional Krylov subspace methods are constructed repeatedly using carefully selected new starting vectors:

Generalized Eigenvalue Problem

lacktriangle A generalized eigenvalue problem has the form $Ax=\lambda Bx$,

▶ When A and B are symmetric and B is SPD, we can perform Cholesky on B, multiply A by the inverted factors, and diagonalize it:

► Alternative canonical forms and methods exist that are specialized to the generalized eigenproblem.