CS 450: Numerical Anlaysis’

Eigenvalue Problems

University of Illinois at Urbana-Champaign

"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



Eigenvalues and Eigenvectors
» A matrix A has eigenvector-eigenvalue pair (eigenpair) (A, x) if
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» Each n x n matrix has up to n eigenvalues, which are either real or complex
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Eigenvalue Decomposition ff)g)»x“w ey Wei= e

» If a matrix A is diagonalizable, it hasan eigenvalue decomposition




Similarity of Matrices
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Canonical Forms
» Any matrix is similar to a bidiagonal matrix, giving its Jordan form:
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» Any diagonalizable matrix is unitarily similar to a trlangular matrix, giving its
Schur form: “w vedhors
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Activity: Calculating Eigenpairs of a Triangular Matrix

Eigenvectors from Schur Form

» Given the eigenvectors of one matrix, we seek those of a similar matrix:
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> Its eas to obtain eigenvectors of triangular matrix T':
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Rayleigh Quotient l\Av (WA
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Perturbation Analysis of Eigenvalue Problems
> Suppose we seek eigenvalyes D = X~ 1AX but find those of a slightly
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» Gershgorin’s theorem allows us to bound the effect of the perturbation on
the eigenvalues of a (diagonal) matrix:
Given a matrix A € R™", let r; = ., |aij|, define the Gershgorin disks as

D;={2€C:|z—ay| <r}.
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Gershgorin Theorem Perturbation Visualization
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» Top corresponds to Gershgorin disks on complex plane of 4-by-4 real matrix.

» Bottom part corresponds to bounds on Gershgorin disks of X ~}(A + §A) X,
which contain the eigenvalues D of A and the perturbed eigenvalues
D + 6D of A+ dA provided that ||0 A|| is sufficiently small.



Conditioning of Particular Eigenpairs

» Consider the effect of a matrix perturbation on an eigenvalue \ associated
with a right eigenvector = and a left eigenvector y, A\ = y Ax/y" z

> A more accurate eigenvalue approximation than Rayleigh quotient for a
normalized perturbed eigenvector (e.g., iterative guess) & = = + dx, can be
obtained with an estimate of both eigenvectors (also § = y + dy),



Demo: Power iteration and its Variants

Power Iteration

» Power iteration can be used to compute the largest eigenvalue of a real
symmetric matrix A:

» The error of power iteration decreases at each step by the ratio of the
largest eigenvalues:



Activity: Inverse Iteration with a Shift

Inverse and Rayleigh Quotient Iteration Activity: Rayleigh Quotient Iteration
» Inverse iteration uses LU/QR/SVD of A to run power iteration on A~!

» Rayleigh quotient iteration provides rapid convergence to an eigenpair



Deflation

» Power, inverse, and Rayleigh-quotient iteration compute a single eigenpair,
to obtain further eigenpairs, can perform deflation



Demo: Householder Similarity Transforms

Direct Matrix Reductions

» We can always compute an orthogonal similarity transformation to reduce a
general matrix to upper-Hessenberg (upper-triangular plus the first
subdiagonal) matrix H,i.e. A = QHQ":

» In the symmetric case, Hessenberg form implies tridiagonal:



Demo: Orthogonal Iteration

Simultaneous and Orthogonal Iteration Activity: Orthogonal Iteration

» Simultaneous iteration provides the main idea for computing many
eigenvectors at once:

» Orthogonal iteration performs QR at each step to ensure stability



QR Iteration

» QR iteration reformulates orthogonal iteration for n = k to reduce cost/step,

» Using induction, we assume A; = C)ZTAQZ and show that QR iteration
) AT o



Activity: QR Iteration

QR Iteration with Shift

> QR iteration can be accelerated using shifting:

» The shift is typically selected to accelerate convergence with respect to a
particular eigenvalue:



QR Iteration Complexity

> QR iteration is accelerated by first reducing to upper-Hessenberg or
tridiagonal form:



Solving Tridiagonal Symmetric Eigenproblems
A variety of methods exists for the tridiagonal eigenproblem:
> QR iteration

» Divide and conquer



Solving the Secular Equation for Divide and Conquer
To solve the eigenproblem at each step, the divide and conquer method needs to
diagonalize a rank-1 perturbation of a diagonal matrix

A=D+auu’.



Introduction to Krylov Subspace Methods
» Krylov subspace methods work with information contained in the n x k matrix
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» The matrix K,,' AK,, is a companion matrix C-



Krylov Subspaces
» Given Q. R;, = K, we obtain an orthonormal basis for the Krylov subspace,

Ki(A,xo) = span(Qr) = {p(A)xo : deg(p) < k},
where p is any polynomial of degree less than k.

» The Krylov subspace includes the k — 1 approximate dominant eigenvectors
generated by k — 1 steps of power iteration:



Krylov Subspace Methods
> The k x k matrix Hy = QL AQj, minimizes ||AQy, — QrHy||2:

» H, is Hessenberg, because the companion matrix C}, is Hessenberg:



Demo: Arnoldi vs Power Iteration

Rayl 6|g h-Ritz Procedure Activity: Computing the Maximum Ritz Value

» The eigenvalues/eigenvectors of H,, are the Ritz values/vectors:

» The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only H;, and Qy:



. . Demo: Arnoldi Iteration
Arnoldi Iteration Demo: Arnoldi Iteration with Complex Eigenvalues

» Arnoldi iteration computes H = H,, directly using the recurrence
ql Aq; = h;j, where g, is the Ith column of Q..

» After each matrix-vector product, orthogonalization is done with respect to
each previous vector:



Activity: Approximation with Orthogonal Iteration and Lanczos

Lanczos Iteration

» Lanczos iteration provides a method to reduce a symmetric matrix to a
tridiagonal matrix:

> After each matrix-vector product, it suffices to orthogonalize with respect to
two previous vectors:



Cost Krylov Subspace Methods

» The cost of matrix-vector multiplication when the matrix has m nonzeros

» The cost of orthogonalization at the kth iteration of a Krylov subspace
method is



Restarting Krylov Subspace Methods

» In finite precision, Lanczos generally loses orthogonality, while
orthogonalization in Arnoldi can become prohibitively expensive:

» Consequently, in practice, low-dimensional Krylov subspace methods are
constructed repeatedly using carefully selected new starting vectors:



Generalized Eigenvalue Problem
> A generalized eigenvalue problem has the form Ax = ABz,

» When A and B are symmetric and B is SPD, we can perform Cholesky on B,
multiply A by the inverted factors, and diagonalize it:

» Alternative canonical forms and methods exist that are specialized to the
generalized eigenproblem.



