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"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



. . . Activity: Newton’s Method for 2-by-2 System of Equations
Solving Nonlinear Equations

» Solving (systems of) nonlinear equations corresponds to root finding:
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» Algorithms for root-finding make it possible to solve systems of nonlinear
equations and employ a similar methodology to finding minima in optimization.
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Demo: Three quadratic functions

Nonexistence and Nonuniqueness of Solutions

» Solutions do not generally exist and are not generally unique, even in the
univariate case:
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» Solutions in the multivariate case correspond to intersections of

hypersurfaces:
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Conditions for Existence of Solution
» Intermediate value theorem for univariate problems:

bescket Cabb | gign (8(0) # gign (LA

L V3 Ldv\e\\’v\k ousS
l‘_*%f = 3 & el RRUENRTS

» A function has a unique fixed point g(x*) = «* in a given closed domain if it
is contractive and contained in that"domain, 3 ~
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Conditioning of Nonlinear Equations

> Generally, we take interest in the absolute rather than relative conditioning
of solving f(z) = 0: -
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Multiple Roots and Degeneracy
> If 2* is a root of f with multiplicity m, its m — 1 derivatives are also zero at z*,

f(:z:*) — f’(x*) — f”(x*) — _ f(mfl ( *) 0.
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» Increased multiplicity affects conditioning an convergence
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Demo: Bisection Method

Bisection Algorithm
» Assume we know the desired root exists in a bracket [a, b] and

sign(f(a)) # sign(f(b)):
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> Bisection subdivides the interval by a factor of two at each step by
considering f(c) at cx = (ar + bg)/2:
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Demo: Rates of Convergence

Rates of Convergence

> Let x; be the kth ite e, = =z* he error, bisection obtains
linear convergence,(limy_, ||ex —1|(< C where C < 1:
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Convergence of ixed Point Iteration
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, Demo: Newton’s Method
Newton’s Method Demo: Convergence of Newton’s Method

> Newton's method is derived from Wion of f at x;:
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» Newton’s methadis-gquqdratically convergent if started sufficiently close to
x* so long a

o ON= x L/ -

—— C

UJ, conv. & f \('8*\30 /\%/\/\

{ 8 = pny/E W) R

%\(kb) -~ — v, el



Demo: Secant Method
gpce of the Secant Method

Secant Method
» The Secant method approximates f/(zy)
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Nonlinear Tangential Interpolants

» Secant method uses a linear interpolantt onpoints f(xk), f(zk_1),
could use more points and highe
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» Quadratic interpolation (Muller’s method) achieves convergence rate
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» Inverse quadratic interpolation resotves the problem of
nonexistence/nonuniqueness of of polynomial interpolants:




Achieving Global Convergence
» Hybrid bisection/Newton methods:
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» Bounded (damped) step-size:
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Systems of Nonlinear Equations
0

> Given f(x) = [fi(x) fm(:n)]T for z € R", seek z* so that f(z*) =

> At a particular point =, the Jacobian of f, describes how f changesin a

given direction of change in «,
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Demo: Newton’s method in n dimensions

Multivariate Newton Iteration

» Fixed-point iteration x;,1 = g(x)) achieves local convergence so long as
|Amax(Jg(x*))| < 1 and quadratic convergence if J; = O:



Multidimensional Newton’s Method
> Newton’'s method corresponds to the fixed-point iteration

> Quadratic convergence is achieved when the Jacobian of a fixed-point
iteration is zero at the solution, which is true for Newton’s method:



Estimating the Jacobian using Finite Differences
> To obtain J¢(x;) at iteration &, can use finite differences:

» n + 1 function evaluations are needed: f(x) and f(x + he;),Vi € {1,...,n},
which correspond to m(n + 1) scalar function evaluations if J¢(x)) € R™*".



Cost of Multivariate Newton Iteration
» What is the cost of solving J¢(x)s, = f(x)?

» What is the cost of Newton'’s iteration overall?



. Activity: Broyden’s Method
Quasi-Newton Methods

tion, seek approximate Jacobian J¢(x;) for each x;,

» Find By = By, +(0Bj) = J¢(x;41), SO as to approximate secant equation
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» Broyden’s method solves the secant equation and minimizes ||0 By ||
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Safeguarding Methods

» Can dampen step-size to improve reliability of Newton or Broyden iteration:

» Trust region methods provide general step-size control:



