CS 450: Numerical Anlaysis¹ Nonlinear Equations

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Solving Nonlinear Equations

- ► Solving (systems of) nonlinear equations corresponds to root finding:
 - $f(x^*) = 0$
 - $f(x^*) = 0$
 - ▶ Algorithms for root-finding make it possible to solve systems of nonlinear equations and employ a similar methodology to finding minima in optimization.
 - Main algorithmic approach: find successive roots of local linear approximations of f:

Nonexistence and Nonuniqueness of Solutions

➤ Solutions do not generally exist and are not generally unique, even in the univariate case:

Solutions in the multivariate case correspond to intersections of hypersurfaces:

Conditions for Existence of Solution

► Intermediate value theorem for univariate problems:

A function has a unique *fixed point* $g(x^*) = x^*$ in a given closed domain if it is *contractive* and contained in that domain,

$$||g(x) - g(z)|| \le \gamma ||x - z||$$

Conditioning of Nonlinear Equations

lacktriangle Generally, we take interest in the absolute rather than relative conditioning of solving f(x)=0:

The absolute condition number of finding a root x^* of f is $1/|f'(x^*)|$ and for a root x^* of f it is $||J_f^{-1}(x^*)||$:

Multiple Roots and Degeneracy

▶ If x^* is a root of f with multiplicity m, its m-1 derivatives are also zero at x^* ,

$$f(x^*) = f'(x^*) = f''(x^*) = \dots = f^{(m-1)}(x^*) = 0.$$

Increased multiplicity affects conditioning and convergence:

Bisection Algorithm

Assume we know the desired root exists in a bracket [a, b] and $sign(f(a)) \neq sign(f(b))$:

▶ Bisection subdivides the interval by a factor of two at each step by considering $f(c_k)$ at $c_k = (a_k + b_k)/2$:

Rates of Convergence

Let x_k be the kth iterate and $e_k = x_k = x^*$ be the error, bisection obtains linear convergence, $\lim_{k\to\infty} ||e_k||/||e_{k-1}|| \le C$ where C < 1:

lacksquare rth order convergence implies that $||e_k||/||e_{k-1}||^r \leq C$

Convergence of Fixed Point Iteration

Fixed point iteration: $x_{k+1} = g(x_k)$ is locally linearly convergent if for $x^* = g(x^*)$, we have $|g'(x^*)| < 1$:

▶ It is quadratically convergent if $g'(x^*) = 0$:

Newton's method is derived from a *Taylor series* expansion of f at x_k :

Newton's method is *quadratically convergent* if started sufficiently close to x^* so long as $f'(x^*) \neq 0$:

▶ The Secant method approximates $f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$:

▶ The convergence of the Secant method is *superlinear* but not quadratic:

Nonlinear Tangential Interpolants

Secant method uses a linear interpolant based on points $f(x_k)$, $f(x_{k-1})$, could use more points and higher-order interpolant:

• Quadratic interpolation (Muller's method) achieves convergence rate $r \approx 1.84$:

Inverse quadratic interpolation resolves the problem of nonexistence/nonuniqueness of roots of polynomial interpolants:

Achieving Global Convergence

► Hybrid bisection/Newton methods:

► Bounded (damped) step-size:

Systems of Nonlinear Equations
$$f(x) \in \mathbb{R}^n, \text{ seek } x^* \text{ so that } f(x^*) = 0$$

$$f(x) = [f_1(x) \cdots f_m(x)]^T \text{ for } x \in \mathbb{R}^n, \text{ seek } x^* \text{ so that } f(x^*) = 0$$

At a particular point
$$x$$
, the *Jacobian* of f , describes how f changes in a

given direction of change in x,

given direction of change in
$$x$$
,
$$J_f(x) = \begin{bmatrix} \frac{df_1}{dx_1}(x) & \cdots & \frac{df_0}{dx_n}(x) \\ \vdots & & \vdots \\ \frac{df_m}{dx_1}(x) & \cdots & \frac{df_m}{dx_n}(x) \end{bmatrix}$$

 $f(x+s) = f(x) + J_f(x) s + ...$ $f(x+s) = f(x) + J_f(x) s$

Demo: Newton's method in n dimensions **Multivariate Newton Iteration**

lacktriangle Fixed-point iteration $oldsymbol{x}_{k+1} = oldsymbol{g}(oldsymbol{x}_k)$ achieves local convergence so long as $|\lambda_{\sf max}(m{J_g}(m{x}^*))| < 1$ and quadratic convergence if $m{J_g}(m{x}^*) = m{O}$:

Multidimensional Newton's Method

▶ Newton's method corresponds to the fixed-point iteration

Quadratic convergence is achieved when the Jacobian of a fixed-point iteration is zero at the solution, which is true for Newton's method:

Estimating the Jacobian using Finite Differences

▶ To obtain $J_f(x_k)$ at iteration k, can use finite differences:

$$f: R \rightarrow R''$$

$$J_{f}(x) \approx f(x+h) - f(x)$$

$$J_{f}(x) = \begin{cases} f(x) & \text{if } (x) \\ f(x) & \text{if } (x) \end{cases}$$

$$J_{f}(x) \approx f(x+h) - f(x)$$

$$J_{f}(x) = \begin{cases} f(x) & \text{if } (x) \\ f(x) & \text{if } (x) \end{cases}$$

n+1 function evaluations are needed: f(x) and $f(x+he_i)$, $\forall i \in \{1,\dots,n\}$, which correspond to m(n+1) scalar function evaluations if $J_f(x_k) \in \mathbb{R}^{m \times n}$.

Cost of Multivariate Newton Iteration

 $lackbox{lackbox{$\blacktriangleright$}}$ What is the cost of solving $J_{oldsymbol{f}}(x_k)s_k=f(x_k)$?

$$\frac{\mathcal{J}_{f}(x_{k})s_{k} - J(x_{k})!}{\mathcal{D}(n^{3})} \quad \text{at each iteration}$$

$$J_{f}(x_{k}) \neq J_{f}(x_{k+1})$$

What is the cost of Newton's iteration overall?

Ouasi-Newton Methods

In solving a nonlinear equation, seek approximate Jacobian
$$J_f(x_k)$$
 for each x_k Find $B_{k+1} = B_k + \delta B_k \approx J_f(x_{k+1})$, so as to approximate secant equation $B_{k+1}(x_{k+1} - x_k) = f(x_{k+1}) - f(x_k)$

Broyden's method solves the secant equation and minimizes $||\delta B_k||_F$. BLHIER = Blox + (By & r = Byler + &f OCA) cost (throbon excl. for

Safeguarding Methods

- comegy queda beello ► Can dampen step-size to improve reliability of Newton or Broyden iteration: