CS 450: Numerical Anlaysis¹ Numerical Optimization

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Numerical Optimization

Our focus will be on continuous rather than combinatorial optimization:

subject to $g(x) \neq 0$ and $h(x) \leq 0$ constraints f: 12 ~ R

fearible region quaren 3 We consider linear, quadratic, and general nonlinear optimization problems: E.g. h are affine functions

quadratic >> f is quadratic, g, h are liter H_f(x) = H_f(x') \frac{1}{2}x^TAx - b^Tx

Local Minima and Convexity

▶ Without knowledge of the analytical form of the function, numerical optimization methods at best achieve convergence to a *local* rather than *global* minimum:

Existence of Local Minima

Level sets are all points for which f has a given value, sublevel sets are all points for which the value of f is less than a given value:

▶ If there exists a closed and bounded sublevel set in the domain of feasible points, then f has has a global minimum in that set:

need to find z e.t. S(2) has finite size and includes its own bounder bounded closed

Optimality Conditions

► If x is an interior point in the feasible domain and is a local minima,

$$\nabla f(x) = \left[\frac{df}{dx_1}(x) \cdots \frac{df}{dx_n}(x)\right]^T = 0:$$

$$14 \quad \frac{\partial f}{\partial x_1}(x) \quad \angle \quad 0 \quad \text{Hen} \quad x + \delta x \quad \Rightarrow \quad f(x + \delta x) \quad \angle \quad f(x)$$

$$14 \quad \frac{\partial f}{\partial x_1}(x) \quad \angle \quad 0 \quad \text{Hen} \quad x + \delta x \quad \Rightarrow \quad f(x + \delta x) \quad \angle \quad f(x)$$

Critical points x satisfy $\nabla f(x) = 0$ and can be minima, maxima, or saddle points:

Hessian Matrix

▶ To ascertain whether a critical point x, for which $\nabla f(x) = 0$, is a local

minima, consider the Hessian matrix:

$$H_{+}(x) = \int_{\nabla f}(x) = \int_{\partial x_{1}}^{\partial f} \int_{\partial x_{2}}^{\partial x_{3}} \int_{\partial x_{3}}^{\partial x_{3}} \int_{\partial x$$

▶ If x^* is a minima of f, then $H_f(x^*)$ is positive semi-definite:

If
$$x^*$$
 is a minima of f , then $H_f(x^*)$ is positive semi-definite:

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(X^*) \neq 0
\end{cases}$$

$$\begin{cases}
(H_f(x^*) \neq 0 \\
(H_f(x^*) \neq 0 \\
(H_f(x^*) \neq 0
\end{cases}$$

Optimality on Feasible Region Border

▶ Given an equality constraint g(x) = 0, it is no longer necessarily the case that $\nabla f(x^*) = 0$. Instead, it may be that directions in which the gradient decreases lead to points outside the feasible region:

Such constrained minima are critical points of the Lagrangian function $\mathcal{L}(x, \lambda) = f(x) + \lambda^T g(x)$, so they satisfy:

$$abla \mathcal{L}(oldsymbol{x}^*,oldsymbol{\lambda}) = egin{bmatrix}
abla f(oldsymbol{x}^*) + oldsymbol{J}_{oldsymbol{g}}^T(oldsymbol{x}^*)oldsymbol{\lambda} \ g(oldsymbol{x}^*) \end{bmatrix} = oldsymbol{0}$$

Sensitivity and Conditioning

The condition number of solving a nonlinear equations is $1/f'(x^*)$, however for a minimizer x^* , we have $f'(x^*) = 0$, so conditioning of optimization is inherently bad:

▶ To analyze worst case error, consider how far we have to move from a root x^* to perturb the function value by ϵ :

Golden Section Search

▶ Given bracket [a, b] with a unique local minimum (f is unimodal on the interval), golden section search considers consider points $f(x_1), f(x_2), a < x_1 < x_2 < b$ and discards subinterval $[a, x_1]$ or $[x_2, b]$:

Since one point remains in the interval, golden section search selects x_1 and x_2 so one of them can be effectively reused in the next iteration:

Newton's Method for Optimization

► At each iteration, approximate function by quadratic and find minimum of quadratic function:

▶ The new approximate guess will be given by $x_{k+1} - x_k = -f'(x_k)/f''(x_k)$:

Successive Parabolic Interpolation

▶ Interpolate *f* with a quadratic function at each step and find its minima:

ightharpoonup The convergence rate of the resulting method is roughly 1.324

Safeguarded 1D Optimization

▶ Safeguarding can be done by bracketing via golden section search:

► Backtracking and step-size control:

General Multidimensional Optimization

▶ Direct search methods by simplex (*Nelder-Mead*):

▶ Steepest descent: find the minimizer in the direction of the negative gradient:

Convergence of Steepest Descent

► Steepest descent converges linearly with a constant that can be arbitrarily close to 1:

Given quadratic optimization problem $f(x) = \frac{1}{2}x^TAx + c^Tx$ where A is symmetric positive definite, the error $e_k = x_k - x^*$ satisfies

Gradient Methods with Extrapolation

We can improve the constant in the linear rate of convergence of steepest descent by leveraging *extrapolation methods*, which consider two previous iterates (maintain *momentum* in the direction $x_k - x_{k-1}$):

The *heavy ball method*, which uses constant $\alpha_k = \alpha$ and $\beta_k = \beta$, achieves better convergence than steepest descent:

Conjugate Gradient Method

The *conjugate gradient method* is capable of making the optimal choice of α_k and β_k at each iteration of an extrapolation method:

Parallel tangents implementation of the method proceeds as follows

Krylov Optimization Demo: Conjugate Gradient Parallel Tangents as Krylov Subspace Method

Conjugate Gradient finds the minimizer of $f(x) = \frac{1}{2}x^TAx + c^Tx$ within the Krylov subspace of A:

Newton's Method

Newton's method in *n* dimensions is given by finding minima of *n*-dimensional quadratic approximation:

Quasi-Newton Methods

▶ Quasi-Newton methods compute approximations to the Hessian at each step:

▶ The *BFGS* method is a secant update method, similar to Broyden's method:

Nonlinear Least Squares

An important special case of multidimensional optimization is *nonlinear least* squares, the problem of fitting a nonlinear function $f_x(t)$ so that $f_x(t_i) \approx y_i$:

We can cast nonlinear least squares as an optimization problem and solve it by Newton's method:

Gauss-Newton Method

► The Hessian for nonlinear least squares problems has the form:

▶ The *Gauss-Newton* method is Newton iteration with an approximate Hessian:

► The Levenberg-Marquardt method incorporates Tykhonov regularization into the linear least squares problems within the Gauss-Newton method.

Constrained Optimization Problems

▶ We now return to the general case of *constrained* optimization problems:

- Generally, we will seek to reduce constrained optimization problems to a series of unconstrained optimization problems:
 - sequential quadratic programming:
 - penalty-based methods:
 - active set methods:

Sequential Quadratic Programming

▶ Sequential quadratic programming (SQP) corresponds to using Newton's method to solve the equality constrained optimality conditions, by finding critical points of the Lagrangian function $\mathcal{L}(x, \lambda) = f(x) + \lambda^T g(x)$,

lacktriangle At each iteration, SQP computes $egin{bmatrix} m{x}_{k+1} \ m{\lambda}_{k+1} \end{bmatrix} = egin{bmatrix} m{x}_k \ m{\lambda}_k \end{bmatrix} + egin{bmatrix} m{s}_k \ m{\delta}_k \end{bmatrix}$ by solving

Inequality Constrained Optimality Conditions

► The *Karush-Kuhn-Tucker (KKT)* conditions hold for local minima of a problem with equality and inequality constraints, the key conditions are

► To use SQP for an inequality constrained optimization problem, consider at each iteration an *active set* of constraints:

Penalty Functions

Alternatively, we can reduce constrained optimization problems to unconstrained ones by modifying the objective function. *Penalty* functions are effective for equality constraints g(x) = 0:

► The augmented Lagrangian function provides a more numerically robust approach:

Barrier Functions

Barrier functions (interior point methods) provide an effective way of working with inequality constraints $h(x) \leq 0$: