CS 450: Numerical Anlaysis’

Numerical Optimization

University of Illinois at Urbana-Champaign

"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



Numerical Optimization
» Our focus will be on continuous rather than combinatorial optimization:
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» We consider lin€ar, quadratic, and general nonlinear optimization problems:
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Local Minima and Convexity

» Without knowledge of the analytical form of the function, numerical
optimization methods at best achieve convergence tther than
global minimum:
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> A setis convex if it includes all points on any line, while a function is
(strictly) convex if its (unique) local)/mirfimum is always a global minimum:
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Existence of Local Minima

» Level sets are all points for which f has a glven value sublevel sets are all
points for which the value of f is less than ﬁen value:
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» If there exists a closed and bounded sublevel set in the domain of fea5|ble
points, then f has has a global minimum in that set:
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Optimality Conditions

» If x is an interior point in the feasible domain and is a local minima,
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» Critical points x satisfy V f(x) = 0 and can be minima, maxima, or saddle
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Hessian Matrix
» To ascertain whether a critical point «, for which Vf(x) = 0 is a local

minima, consider the Hessmn matrix:
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» If z* is a minima of f, then Hf ) is positive semi-definite:
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Optimality on Feasible Region Border
» Given an equality constraint g(x) = 0, it is no longer necessarily the case
that Vf(x*) = 0. Instead, it may be that directions in which the gradient
decreases lead to points outside the feasible region:

IA € R, — I ()2
— _—

—
X

» Such constrained minima are critical points of the Lagrangian function
L(z,\) = f(z) + ATg(x), so they satisfy:

Vf(x*)+ Jg(w*)A

g(x”) =0

VL(z*\) =



Sensitivity and Conditioning
» The condition number of solving a nonlinear equations is 1/ f/(z*), however
for a minimizer z*, we have f’(z*) = 0, so conditioning of optimization is
inherently bad:

» To analyze worst case error, consider how far we have to move from a root =*
to perturb the function value by e:



Demo: Golden Section Proportions

Golden Section Search
» Given bracket [a, b] with a unique local minimum (f is unimodal on the
interval), golden section search considers consider points f(x1), f(x2),

a < x1 < xg < b and discards subinterval [a, x1] or [x2, b]:

» Since one point remains in the interval, golden section search selects z; and
o S0 one of them can be effectively reused in the next iteration:



Demo: Newton’s Method in 1D

Newton’s Method for Optimization

> At each iteration, approximate function by quadratic and find minimum of
guadratic function:

» The new approximate guess will be given by z 1 — xp = —f"(zx) / f" (x):



Successive Parabolic Interpolation
» Interpolate f with a quadratic function at each step and find its minima:

» The convergence rate of the resulting method is roughly 1.324



Safeguarded 1D Optimization

» Safeguarding can be done by bracketing via golden section search:

» Backtracking and step-size control:



.. . .. . Demo: Nelder-Mead Method
General Multidimensional Optimization

» Direct search methods by simplex (Nelder-Mead):

> Steepest descent: find the minimizer in the direction of the negative gradient:



Demo: Steepest Descent

Convergence of Steepest Descent

> Steepest descent converges linearly with a constant that can be arbitrarily
close to 1:

> Given quadratic optimization problem f(z) = =7 Az + ¢’z where A is
symmetric positive definite, the error e, = x;, — x* satisfies



Gradient Methods with Extrapolation

» We can improve the constant in the linear rate of convergence of steepest
descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction x;, — x;,_1):

» The heavy ball method, which uses constant o, = o and 38, = 8, achieves
better convergence than steepest descent:



Demo: Conjugate Gradient Method

Conjugate Gradient Method

» The conjugate gradient method is capable of making the optimal choice of «;,
and 3, at each iteration of an extrapolation method:

» Parallel tangents implementation of the method proceeds as follows



Demo: Conjugate Gradient Parallel Tangents as Krylov Subspace Method

Krylov Optimization

> Conjugate Gradient finds the minimizer of f(z) = 1”7 Az + ¢’z within the
Krylov subspace of A:



Demo: Newton’s Method in n dimensions

Newton’s Method

» Newton’s method in n dimensions is given by finding minima of
n-dimensional quadratic approximation:



Quasi-Newton Methods
» Quasi-Newton methods compute approximations to the Hessian at each step:

» The BFGS method is a secant update method, similar to Broyden’s method:



Nonlinear Least Squares

» An important special case of multidimensional optimization is nonlinear least
squares, the problem of fitting a nonlinear function f(¢) so that fx(t;) ~ v;:

> We can cast nonlinear least squares as an optimization problem and solve it
by Newton’s method:



Gauss-Newton Method
» The Hessian for nonlinear least squares problems has the form:

» The Gauss-Newton method is Newton iteration with an approximate Hessian:

» The Levenberg-Marquardt method incorporates Tykhonov regularization into
the linear least squares problems within the Gauss-Newton method.



Constrained Optimization Problems

> We now return to the general case of constrained optimization problems:

» Generally, we will seek to reduce constrained optimization problems to a
series of unconstrained optimization problems:

» sequential quadratic programming:
» penalty-based methods:

» active set methods:



. . . Demo: Sequential Quadratic Programming
Sequential Quadratic Programming

» Sequential quadratic programming (SQP) corresponds to using Newton’s
method to solve the equality constrained optimality conditions, by finding
critical points of the Lagrangian function £(z, \) = f(x) + ATg(=),

> At each iteration, SQP computes [wk“] = [wk} + [Sk} by solving
Ak+1 Ak O



Inequality Constrained Optimality Conditions

» The Karush-Kuhn-Tucker (KKT) conditions hold for local minima of a problem
with equality and inequality constraints, the key conditions are

» To use SQP for an inequality constrained optimization problem, consider at
each iteration an active set of constraints:



Penalty Functions

» Alternatively, we can reduce constrained optimization problems to
unconstrained ones by modifying the objective function. Penalty functions
are effective for equality constraints g(x) = 0:

» The augmented Lagrangian function provides a more numerically robust
approach:



Barrier Functions

» Barrier functions (interior point methods) provide an effective way of working
with inequality constraints h(x) < 0:



