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Numerical Optimization
� Our focus will be on continuous rather than combinatorial optimization:

min
x

f(x) subject to g(x) = 0 and h(x) ≤ 0

� We consider linear, quadratic, and general nonlinear optimization problems:



Local Minima and Convexity
� Without knowledge of the analytical form of the function, numerical

optimization methods at best achieve convergence to a local rather than
global minimum:

� A set is convex if it includes all points on any line, while a function is
(strictly) convex if its (unique) local minimum is always a global minimum:



Existence of Local Minima
� Level sets are all points for which f has a given value, sublevel sets are all

points for which the value of f is less than a given value:

� If there exists a closed and bounded sublevel set in the domain of feasible
points, then f has has a global minimum in that set:



Optimality Conditions
� If x is an interior point in the feasible domain and is a local minima,

∇f(x) =
�

df
dx1

(x) · · · df
dxn

(x)
�T

= 0 :

� Critical points x satisfy ∇f(x) = 0 and can be minima, maxima, or saddle
points:



Hessian Matrix
� To ascertain whether a critical point x, for which ∇f(x) = 0, is a local

minima, consider the Hessian matrix:

� If x∗ is a minima of f , then Hf (x
∗) is positive semi-definite:



Optimality on Feasible Region Border
� Given an equality constraint g(x) = 0, it is no longer necessarily the case

that ∇f(x∗) = 0. Instead, it may be that directions in which the gradient
decreases lead to points outside the feasible region:

∃λ ∈ Rn, −∇f(x∗) = JT
g (x

∗)λ

� Such constrained minima are critical points of the Lagrangian function
L(x,λ) = f(x) + λTg(x), so they satisfy:

∇L(x∗,λ) =
�
∇f(x∗) + JT

g (x
∗)λ

g(x∗)

�
= 0



Sensitivity and Conditioning
� The condition number of solving a nonlinear equations is 1/f �(x∗), however

for a minimizer x∗, we have f �(x∗) = 0, so conditioning of optimization is
inherently bad:

� To analyze worst case error, consider how far we have to move from a root x∗

to perturb the function value by �:



Golden Section Search
� Given bracket [a, b] with a unique local minimum (f is unimodal on the

interval), golden section search considers consider points f(x1), f(x2),
a < x1 < x2 < b and discards subinterval [a, x1] or [x2, b]:

� Since one point remains in the interval, golden section search selects x1 and
x2 so one of them can be e�ectively reused in the next iteration:

Demo: Golden Section Proportions



Newton’s Method for Optimization
� At each iteration, approximate function by quadratic and find minimum of

quadratic function:

� The new approximate guess will be given by xk+1 − xk = −f �(xk)/f ��(xk):

Demo: Newton’s Method in 1D



Successive Parabolic Interpolation
� Interpolate f with a quadratic function at each step and find its minima:

� The convergence rate of the resulting method is roughly 1.324



Safeguarded 1D Optimization
� Safeguarding can be done by bracketing via golden section search:

� Backtracking and step-size control:



General Multidimensional Optimization
� Direct search methods by simplex (Nelder-Mead):

� Steepest descent: find the minimizer in the direction of the negative gradient:

Demo: Nelder-Mead Method



Convergence of Steepest Descent
� Steepest descent converges linearly with a constant that can be arbitrarily

close to 1:

� Given quadratic optimization problem f(x) = 1
2x

TAx+ cTx where A is
symmetric positive definite, the error ek = xk − x∗ satisfies

Demo: Steepest Descent



Gradient Methods with Extrapolation
� We can improve the constant in the linear rate of convergence of steepest

descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction xk − xk−1):

� The heavy ball method, which uses constant αk = α and βk = β, achieves
better convergence than steepest descent:



Conjugate Gradient Method
� The conjugate gradient method is capable of making the optimal choice of αk

and βk at each iteration of an extrapolation method:

� Parallel tangents implementation of the method proceeds as follows

Demo: Conjugate Gradient Method



Nonlinear Conjugate Gradient

� Various formulations of conjugate gradient are possible for nonlinear
objective functions, which di�er in how they compute β below

� Fletcher-Reeves is among the most common, computes the following at each
iteration
1. Perform 1D minimization for α in f(xk + αsk)

2. xk+1 = xk +αsk

3. Compute gradient gk+1 = ∇f(xk+1)

4. Compute β = gT
k+1gk+1/(g

T
k gk+1)

5. sk+1 = −gk+1 + βsk



Conjugate Gradient for Quadratic Optimization

� Conjugate gradient is an optimal iterative method for quadratic optimization,
f(x) = 1

2x
TAx− bTx

� For such problems, it can be expressed in an e�cient and succinct form,
computing at each iteration
1. α = rTk rk/s

T
kAsk

2. xk+1 = xk + αsk

3. Compute gradient rk+1 = rk − αkAsk

4. Compute β = rT
k+1rk+1/(r

T
k rk+1)

5. sk+1 = rk+1 + βsk

� Note that for quadratic optimization, the negative gradient −g corresponds
to the residual r = b−Ax



Krylov Optimization
� Conjugate Gradient finds the minimizer of f(x) = 1

2x
TAx− bTx within the

Krylov subspace of A:

Demo: Conjugate Gradient Parallel Tangents as Krylov Subspace Method



Newton’s Method
� Newton’s method in n dimensions is given by finding minima of

n-dimensional quadratic approximation:

Demo: Newton’s Method in n dimensions









Quasi-Newton Methods
� Quasi-Newton methods compute approximations to the Hessian at each step:

� The BFGS method is a secant update method, similar to Broyden’s method:



Nonlinear Least Squares
� An important special case of multidimensional optimization is nonlinear least

squares, the problem of fitting a nonlinear function fx(t) so that fx(ti) ≈ yi:

� We can cast nonlinear least squares as an optimization problem and solve it
by Newton’s method:



Gauss-Newton Method
� The Hessian for nonlinear least squares problems has the form:

� The Gauss-Newtonmethod is Newton iteration with an approximate Hessian:

� The Levenberg-Marquardt method incorporates Tykhonov regularization into
the linear least squares problems within the Gauss-Newton method.





Constrained Optimization Problems
� We now return to the general case of constrained optimization problems:

� Generally, we will seek to reduce constrained optimization problems to a
series of unconstrained optimization problems:

� sequential quadratic programming:

� penalty-based methods:

� active set methods:



Sequential Quadratic Programming
� Sequential quadratic programming (SQP) corresponds to using Newton’s

method to solve the equality constrained optimality conditions, by finding
critical points of the Lagrangian function L(x,λ) = f(x) + λTg(x),

� At each iteration, SQP computes
�
xk+1

λk+1

�
=

�
xk

λk

�
+

�
sk
δk

�
by solving

Demo: Sequential Quadratic Programming



Inequality Constrained Optimality Conditions
� The Karush-Kuhn-Tucker (KKT) conditions hold for local minima of a problem

with equality and inequality constraints, the key conditions are

� To use SQP for an inequality constrained optimization problem, consider at
each iteration an active set of constraints:



Penalty Functions
� Alternatively, we can reduce constrained optimization problems to

unconstrained ones by modifying the objective function. Penalty functions
are e�ective for equality constraints g(x) = 0:

� The augmented Lagrangian function provides a more numerically robust
approach:





Barrier Functions
� Barrier functions (interior point methods) provide an e�ective way of working

with inequality constraints h(x) ≤ 0:




