CS 450: Numerical Anlaysis’

Interpolation

University of Illinois at Urbana-Champaign

"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



Interpolation
> Given (t1,®, ... (tm,@) with nodes t; < --- < t,,, an interpolant f satisfies:
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» Interpolant is usually constructed as linear combinations of basis functions
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. . Activity: Interpolation in Monomial Basis
Polynomial Interpolation
» The choice of monomials as basis functions, ¢;(t) = t~! yields a degree
n — 1 polynomial interpolant: -
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» Polynomial interpolants are easy to evaluate and do calculus on:
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Demo: Monomial interpolation

Conditioning of Interpolation
» Conditioning of interpolation matrix Z14‘1’depends on basis functions and

coordinates t1,...,tm: e @
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» The Vandermonde matrix tends to be ill-conditioned:
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Lagrange Basis }y,j & ‘es“s\“‘ RN CARER
» n-points fully define the unique (n — 1)-degree polynomial interpolant in the
Lagrange basis:
A A
@ (“'\ = | E‘Q ‘\ = 4‘3
N
o v',( J— =1 ! ‘(‘"’f iy B

Tx=oy .
¢ (b < Dw'(’ﬁ’**\ (4~ &)
y A N gl = I
L |
» Lagrange polynomials yield an ideal Vandermonde systemw
functions are hard to evaluate and do calculus on:
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Newton Basis

» The Newton basis functions ¢;(t) = [ ji=1{t — t) with ¢ (¢) = 1 seek the best
of monomial and Lagrange bases: ——
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» The Newton basis yields a triangular Vandermon yste 4 | \
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Orthogonal Polynomials

» Recall that good conditioning for interpolation is achieved by constructing a
well-conditioned Vandermonde matrix, which is the case when the columns
(corresponding to each basis function) are orthonormal. To construct robust
basis sets, we introducia notion of orthonormal functions:
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Demo: Orthogonal Polynomials

Legendre Polynomials

» The Gram-Schmidt orthogonalization procedure can be used to obtain an
orthonormal basis with the same span as any given arbitrary basis:
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» The Legendre polynomials areabtained by Gram-Schmidt on the monomial
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Demo: Chebyshev interpolation

ChEbYShEV Basis Activity: Chebyshev Interpolation
> Chebyshev polynomials ¢;(t) = cos((j — 1) arccos(t)) and Chebyshev nodes
t; = cos (21 7) providea way to pick nodes i, .. ., t, along with a basis, to
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Demo: Jump with Chebyshev Nodes

Chebyshev Nodes Intuition

» Note equi-oscillation property, successive extrema of T, = ¢, have the same
magnitude but opposite sign.

» Set of kK Chebyshev nodes of are given by zeros of T}, and are abscissas of
points uniformly spaced on the unit circle.



Error in Interpolation
We show by mductlon that given degre@)f)olynomlal interpolant f of f the error
E(t) = f(t) ) has n zeros tl, .., 1, and there exist y1,...,y, SO —
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Demo: Interpolation Error

Interpolation Error Bounds
» Consequently, polynomial interpolatio&satisfies the following error bound:
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> Letting h = ¢, — t; (often also achieve same for h as the node-spacing
ti+1 — ti), we obtain



Demo: Composite Gauss Interpolation Error

Piecewise Polynomial Interpolation
» The kth piece of the interpolant is typically chosen as polynomial on [t;, ¢;+1]

» Hermite interpolation ensures consecutive interpolant pieces have same
derivative at each knot ¢;:



Spline Interpolation
» Asplineis a (k — 1)-time differentiable piecewise polynomial of degree k:

» The resulting interpolant coefficients are again determined by an
appropriate generalized Vandermonde system:



B-Splines

B-splines provide an effective way of constructing splines from a basis:
» The basis functions can be defined recursively with respect to degree:

> ¢! is a linear hat function that increases from 0 to 1 on [t;, ¢;41] and
decreases from 1 to 0 on [t;11, ;12

> ¢F is is positive on [t;,t;, 1] and zero elsewhere.
» The B-spline basis spans all possible splines of degree k with nodes {¢;}7 .

» The B-spline basis coefficients are determined by a Vandermonde system
that is lower-triangular and banded (has k& subdiagonals), and need not
contain differentiability constraints, since f(¢) is a sum of ¢Fs.



