CS 450: Numerical Anlaysis’

Numerical Integration and Differentiation

University of Illinois at Urbana-Champaign

"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



Integrability and Sensitivity

> Seek to compute Z(f) = [ f(x)da: M\
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» The condition number of integration is bounded by the distance b — a:
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Quadrature Rules
> Approximate the integral Z(f) by a weighted sum of function values:
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» For a fixed set of n nodes, polynomial interpolation followed by integration
give (n — 1)-degree quadrature rule:
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Determining Weights in a General Basis
» A quadrature rule provides x and w so as to approximate
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» Method of undetermined coefficients obtainsy from moment equations based

on Vandermonde system:
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Demo: Newton-Cotes weight finder

Newton-Cotes Quadrature
» Newton-Cotes quadrature rules are defined by equispaced nodes on [a, b]:

» The midpoint rule is the n = 1 open Newton-Cotes rule:

» The trapezoid rule is the n = 2 closed Newton-Cotes rule:

» Simpson’s rule is the n = 3 closed Newton-Cotes rule:



Demo: Accuracy of Newton-Cotes

Error in Newton-Cotes Quadrature

» Consider the Taylor expansion of f about the midpoint of the integration
interval m = (a + b)/2:

Integrating the Taylor approximation of f, we note that the odd terms drop:



Error Estimation

» The trapezoid rule is also first degree, despite using higher-degree
polynomial interpolant approximation, since

» The above derivation allows us to obtain an error approximation via a
difference of midpoint and trapezoidal rules:



Error in Polynomial Quadrature Rules

» We can bound the error for a an arbitrary polynomial quadrature rule by



Conditioning of Newton-Cotes Quadrature

> We can ascertain stability of quadrature rules, by considering the
amplification of a perturbation f = f+ 4 f:

» Newton-Cotes quadrature rules have at least one negative weight for any
n > 11:



Clenshaw-Curtis Quadrature

» To obtain a more stable quadrature rule, we need to ensure the integrated
interpolant is well-behaved as n increases:



Demo: Gaussian quadrature weight finder

Gaussian Quadrature

» So far, we have only considered quadrature rules based on a fixed set of
nodes, but we may also be able to choose nodes to maximize accuracy:

» The unique n-point Gaussian quadrature rule is defined by the solution of the
nonlinear form of the moment equations in terms of both x and w:



Using Gaussian Quadrature Rules

» Gaussian quadrature rules are hard to compute, but can be enumerated for a
fixed interval, e.g. a = 0,b = 1, so it suffices to transform the integral to [0, 1]

» Gaussian quadrature rules are accurate and stable but not progressive
(nodes cannot be reused to obtain higher-degree approximation):



Progressive Gaussian-like Quadrature Rules

» Kronod quadrature rules construct (2n + 1)-point (3n + 1)-degree quadrature
Ky, +1 that is progressive with respect to Gaussian quadrature rule G,,:

» Patterson quadrature rules use 2n + 2 more points to extend (2n + 1)-point
Kronod rule to degree 6n + 4, while reusing all 2n + 1 points.

» Gaussian quadrature rules are in general open, but Gauss-Radau and
Gauss-Lobatto rules permit including end-points:



Composite and Adaptive Quadrature

» Composite quadrature rules are obtained by integrating a piecewise
interpolant of f:

» Composite quadrature can be done with adaptive refinement:



More Complicated Integration Problems

» To handle improper integrals can either transform integral to get rid of
infinite limit or use appropriate open quadrature rules.

» Double integrals can simply be computed by successive 1-D integration.

» High-dimensional integration is often effectively done by Monte Carlo:



Integral Equations

» Rather than evaluating an integral, in solving an integral equation we seek to
compute the integrand. A typical linear integral equation has the form

b
/K(s,t)u(t)dt:f(s), where K and f areknown.

» Using a quadrature rule with weights w1, ..., w, and nodes ¢4, ..., t, obtain



Demo: Taking Derivatives with Vandermonde Matrices

Numerical Differentiation
» Automatic (symbolic) differentiation is a surprisingly viable option:

» Numerical differentiation can be done by interpolation or finite differencing:



Demo: Finite Differences vs Noise

Accura cy of Finite Differences Demo: Floating point vs Finite Differences
» Forward and backward differencing provide first-order accuracy:

» Centered differencing provides second-order accuracy.



Demo: Richardson with Finite Differences

Extrapo lation Techni ques Activity: Richardson Extrapolation

» Given a series of approximate solutions produced by an iterative procedure,
a more accurate approximation may be obtained by extrapolating this series.

» In particular, given two guesses, Richardson extrapolation eliminates the
leading order error term.



High-Order Extrapolation

» Given a series of k approximations, Romberg integration applies
(k — 1)-levels of Richardson extrapolation.

» Extrapolation can be used within an iterative procedure at each step:



