
CS 450: Numerical Anlaysis1
Numerical Integration and Di�erentiation

University of Illinois at Urbana-Champaign

1These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



Integrability and Sensitivity

� Seek to compute I(f) =
� b
a f(x)dx:

� The condition number of integration is bounded by the distance b− a:



Quadrature Rules
� Approximate the integral I(f) by a weighted sum of function values:

� For a fixed set of n nodes, polynomial interpolation followed by integration
give (n− 1)-degree quadrature rule:



Determining Weights in a General Basis
� A quadrature rule provides x and w so as to approximate

� Method of undetermined coe�cients obtains y from moment equations based
on Vandermonde system:



Newton-Cotes Quadrature
� Newton-Cotes quadrature rules are defined by equispaced nodes on [a, b]:

� The midpoint rule is the n = 1 open Newton-Cotes rule:

� The trapezoid rule is the n = 2 closed Newton-Cotes rule:

� Simpson’s rule is the n = 3 closed Newton-Cotes rule:

Demo: Newton-Cotes weight finder



Error in Newton-Cotes Quadrature

� Consider the Taylor expansion of f about the midpoint of the integration
interval m = (a+ b)/2:

Integrating the Taylor approximation of f , we note that the odd terms drop:

Demo: Accuracy of Newton-Cotes



Error Estimation
� The trapezoid rule is also first degree, despite using higher-degree

polynomial interpolant approximation, since

� The above derivation allows us to obtain an error approximation via a
di�erence of midpoint and trapezoidal rules:



Error in Polynomial Quadrature Rules
� We can bound the error for a an arbitrary polynomial quadrature rule by



Conditioning of Newton-Cotes Quadrature
� We can ascertain stability of quadrature rules, by considering the

amplification of a perturbation f̂ = f + δf :

� Newton-Cotes quadrature rules have at least one negative weight for any
n ≥ 11:



Clenshaw-Curtis Quadrature

� To obtain a more stable quadrature rule, we need to ensure the integrated
interpolant is well-behaved as n increases:



Gaussian Quadrature
� So far, we have only considered quadrature rules based on a fixed set of

nodes, but we may also be able to choose nodes to maximize accuracy:

� The unique n-point Gaussian quadrature rule is defined by the solution of the
nonlinear form of the moment equations in terms of both x and w:

Demo: Gaussian quadrature weight finder



Using Gaussian Quadrature Rules

� Gaussian quadrature rules are hard to compute, but can be enumerated for a
fixed interval, e.g. a = 0, b = 1, so it su�ces to transform the integral to [0, 1]

� Gaussian quadrature rules are accurate and stable but not progressive
(nodes cannot be reused to obtain higher-degree approximation):



Progressive Gaussian-like Quadrature Rules
� Kronod quadrature rules construct (2n+1)-point (3n+1)-degree quadrature

K2n+1 that is progressive with respect to Gaussian quadrature rule Gn:

� Patterson quadrature rules use 2n+ 2 more points to extend (2n+ 1)-point
Kronod rule to degree 6n+ 4, while reusing all 2n+ 1 points.

� Gaussian quadrature rules are in general open, but Gauss-Radau and
Gauss-Lobatto rules permit including end-points:



Composite and Adaptive Quadrature
� Composite quadrature rules are obtained by integrating a piecewise

interpolant of f :

� Composite quadrature can be done with adaptive refinement:



More Complicated Integration Problems
� To handle improper integrals can either transform integral to get rid of

infinite limit or use appropriate open quadrature rules.

� Double integrals can simply be computed by successive 1-D integration.

� High-dimensional integration is often e�ectively done by Monte Carlo:



Integral Equations
� Rather than evaluating an integral, in solving an integral equation we seek to

compute the integrand. A typical linear integral equation has the form
� b

a
K(s, t)u(t)dt = f(s), where K and f are known.

� Using a quadrature rule with weights w1, . . . , wn and nodes t1, . . . , tn obtain



Numerical Di�erentiation
� Automatic (symbolic) di�erentiation is a surprisingly viable option:

� Numerical di�erentiation can be done by interpolation or finite di�erencing:

Demo: Taking Derivatives with Vandermonde Matrices



Accuracy of Finite Di�erences
� Forward and backward di�erencing provide first-order accuracy:

� Centered di�erencing provides second-order accuracy.

Demo: Finite Di�erences vs Noise
Demo: Floating point vs Finite Di�erences



Extrapolation Techniques
� Given a series of approximate solutions produced by an iterative procedure,

a more accurate approximation may be obtained by extrapolating this series.

� In particular, given two guesses, Richardson extrapolation eliminates the
leading order error term.

Demo: Richardson with Finite Di�erences
Activity: Richardson Extrapolation



High-Order Extrapolation
� Given a series of k approximations, Romberg integration applies

(k − 1)-levels of Richardson extrapolation.

� Extrapolation can be used within an iterative procedure at each step:


