CS 450: Numerical Anlaysis¹ Nonlinear Equations

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Solving Nonlinear Equations

Solving (systems of) nonlinear equations corresponds to root finding:

Solving nonlinear equations has many applications:

Solving Nonlinear Equations

Main algorithmic approach: find successive roots of local linear approximations of f:

Demo: Three quadratic functions

Nonexistence and Nonuniqueness of Solutions

Solutions do not generally exist and are not generally unique, even in the univariate case:

Solutions in the multivariate case correspond to intersections of hypersurfaces:

Conditions for Existence of Solution

Intermediate value theorem for univariate problems:

A function has a unique *fixed point* g(x*) = x* in a given closed domain if it is *contractive* and contained in that domain,

$$||m{g}(m{x}) - m{g}(m{z})|| \le \gamma ||m{x} - m{z}||, 0 \le \gamma < 1$$

Conditioning of Nonlinear Equations

Generally, we take interest in the absolute rather than relative conditioning of solving f(x) = 0:

The absolute condition number of finding a root x* of f is 1/|f'(x*)| and for a root x* of f it is ||J_f⁻¹(x*)||:

Multiple Roots and Degeneracy

• If x^* is a root of f with *multiplicity* m, its m-1 derivatives are also zero at x^* ,

$$f(x^*) = f'(x^*) = f''(x^*) = \dots = f^{(m-1)}(x^*) = 0.$$

Increased multiplicity affects conditioning and convergence:

Demo: Bisection Method

Bisection Algorithm

► Assume we know the desired root exists in a bracket [a, b] and sign(f(a)) ≠ sign(f(b)):

Bisection subdivides the interval by a factor of two at each step by considering $f(c_k)$ at $c_k = (a_k + b_k)/2$:

Convergence of Fixed Point Iteration

► Fixed point iteration: x_{k+1} = g(x_k) is locally linearly convergent if for x^{*} = g(x^{*}), we have |g'(x^{*})| < 1:</p>

• It is quadratically convergent if $g'(x^*) = 0$:

Newton's Method

Demo: Newton's Method **Demo:** Convergence of Newton's Method

Newton's method is derived from a *Taylor series* expansion of f at x_k :

Newton's method is *quadratically convergent* if started sufficiently close to x^* so long as $f'(x^*) \neq 0$:

Secant Method

Demo: Secant Method **Demo:** Convergence of the Secant Method

The Secant method approximates
$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$
:

> The convergence of the Secant method is *superlinear* but not quadratic:

Activity: Inverse Quadratic Interpolation

Nonlinear Tangential Interpolants

Secant method uses a linear interpolant based on points $f(x_k)$, $f(x_{k-1})$, could use more points and higher-order interpolant:

• Quadratic interpolation (Muller's method) achieves convergence rate $r \approx 1.84$:

Inverse quadratic interpolation resolves the problem of nonexistence/nonuniqueness of roots of polynomial interpolants:

Achieving Global Convergence

Hybrid bisection/Newton methods:

Bounded (damped) step-size:

Systems of Nonlinear Equations

• Given $f(x) = \begin{bmatrix} f_1(x) & \cdots & f_m(x) \end{bmatrix}^T$ for $x \in \mathbb{R}^n$, seek x^* so that $f(x^*) = 0$

At a particular point x, the Jacobian of f, describes how f changes in a given direction of change in x,

$$oldsymbol{J}_{oldsymbol{f}}(oldsymbol{x}) = egin{bmatrix} rac{df_1}{dx_1}(oldsymbol{x}) & \cdots & rac{df_1}{dx_n}(oldsymbol{x}) \ dots & dots & dots \ rac{df_m}{dx_1}(oldsymbol{x}) & \cdots & rac{df_m}{dx_n}(oldsymbol{x}) \end{bmatrix}$$

Multivariate Newton Iteration

Fixed-point iteration $x_{k+1} = g(x_k)$ achieves local convergence so long as $|\lambda_{\max}(J_g(x^*))| < 1$ and quadratic convergence if $J_g(x^*) = O$:

Multidimensional Newton's Method

Newton's method corresponds to the fixed-point iteration

$$oldsymbol{g}(oldsymbol{x}) = oldsymbol{x} - oldsymbol{J}_{oldsymbol{f}}^{-1}(oldsymbol{x})oldsymbol{f}(oldsymbol{x})$$

Quadratic convergence is achieved when the Jacobian of a fixed-point iteration is zero at the solution, which is true for Newton's method:

Estimating the Jacobian using Finite Differences

• To obtain $J_f(x_k)$ at iteration k, can use finite differences:

▶ n + 1 function evaluations are needed: f(x) and $f(x + he_i), \forall i \in \{1, ..., n\}$, which correspond to m(n + 1) scalar function evaluations if $J_f(x_k) \in \mathbb{R}^{m \times n}$.

Cost of Multivariate Newton Iteration

• What is the cost of solving $J_f(x_k)s_k = f(x_k)$?

What is the cost of Newton's iteration overall?

Quasi-Newton Methods

In solving a nonlinear equation, seek approximate Jacobian $J_f(x_k)$ for each x_k

Find $B_{k+1} = B_k + \delta B_k \approx J_f(x_{k+1})$, so as to approximate secant equation

$$oldsymbol{B}_{k+1}(\underbrace{oldsymbol{x}_{k+1}-oldsymbol{x}_k}_{oldsymbol{\delta x}})=\underbrace{oldsymbol{f}(oldsymbol{x}_{k+1})-oldsymbol{f}(oldsymbol{x}_k)}_{oldsymbol{\delta f}}$$

Broyden's method solves the secant equation and minimizes $||\delta B_k||_F$:

$$oldsymbol{\delta} oldsymbol{B}_k = rac{oldsymbol{\delta} oldsymbol{f} - oldsymbol{B}_k oldsymbol{\delta} oldsymbol{x}}{||oldsymbol{\delta} oldsymbol{x}||^2} oldsymbol{\delta} oldsymbol{x}^T$$

Safeguarding Methods

Can dampen step-size to improve reliability of Newton or Broyden iteration:

Trust region methods provide general step-size control: