CS 450: Numerical Anlaysis ${ }^{1}$
 Nonlinear Equations

University of Illinois at Urbana-Champaign

[^0]
Solving Nonlinear Equations

- Solving (systems of) nonlinear equations corresponds to root finding:
- Solving nonlinear equations has many applications:

Solving Nonlinear Equations

Activity: Newton's Method for 2-by-2 System of Equations

Main algorithmic approach: find successive roots of local linear approximations of f :

Nonexistence and Nonuniqueness of Solutions

- Solutions do not generally exist and are not generally unique, even in the univariate case:
- Solutions in the multivariate case correspond to intersections of hypersurfaces:

Conditions for Existence of Solution

- Intermediate value theorem for univariate problems:
- A function has a unique fixed point $\boldsymbol{g}\left(\boldsymbol{x}^{*}\right)=\boldsymbol{x}^{*}$ in a given closed domain if it is contractive and contained in that domain,

$$
\|\boldsymbol{g}(\boldsymbol{x})-\boldsymbol{g}(\boldsymbol{z})\| \leq \gamma\|\boldsymbol{x}-\boldsymbol{z}\|, 0 \leq \gamma<1
$$

Conditioning of Nonlinear Equations

- Generally, we take interest in the absolute rather than relative conditioning of solving $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$:
- The absolute condition number of finding a root x^{*} of f is $1 /\left|f^{\prime}\left(x^{*}\right)\right|$ and for a root \boldsymbol{x}^{*} of \boldsymbol{f} it is $\left\|\boldsymbol{J}_{\boldsymbol{f}}^{-1}\left(\boldsymbol{x}^{*}\right)\right\|$:

Multiple Roots and Degeneracy

- If x^{*} is a root of f with multiplicity m, its $m-1$ derivatives are also zero at x^{*},

$$
f\left(x^{*}\right)=f^{\prime}\left(x^{*}\right)=f^{\prime \prime}\left(x^{*}\right)=\cdots=f^{(m-1)}\left(x^{*}\right)=0 .
$$

- Increased multiplicity affects conditioning and convergence:

Bisection Algorithm

- Assume we know the desired root exists in a bracket $[a, b]$ and $\operatorname{sign}(f(a)) \neq \operatorname{sign}(f(b))$:
- Bisection subdivides the interval by a factor of two at each step by considering $f\left(c_{k}\right)$ at $c_{k}=\left(a_{k}+b_{k}\right) / 2$:

Convergence of Fixed Point Iteration

- Fixed point iteration: $x_{k+1}=g\left(x_{k}\right)$ is locally linearly convergent if for $x^{*}=g\left(x^{*}\right)$, we have $\left|g^{\prime}\left(x^{*}\right)\right|<1$:
- It is quadratically convergent if $g^{\prime}\left(x^{*}\right)=0$:

Newton's Method

- Newton's method is derived from a Taylor series expansion of f at x_{k} :
- Newton's method is quadratically convergent if started sufficiently close to x^{*} so long as $f^{\prime}\left(x^{*}\right) \neq 0$:

Secant Method

- The Secant method approximates $f^{\prime}\left(x_{k}\right) \approx \frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}$:
- The convergence of the Secant method is superlinear but not quadratic:

Nonlinear Tangential Interpolants

- Secant method uses a linear interpolant based on points $f\left(x_{k}\right), f\left(x_{k-1}\right)$, could use more points and higher-order interpolant:
- Quadratic interpolation (Muller's method) achieves convergence rate $r \approx 1.84$:
- Inverse quadratic interpolation resolves the problem of nonexistence/nonuniqueness of roots of polynomial interpolants:

Achieving Global Convergence

- Hybrid bisection/Newton methods:
- Bounded (damped) step-size:

Systems of Nonlinear Equations

- Given $\boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{lll}f_{1}(\boldsymbol{x}) & \cdots & f_{m}(\boldsymbol{x})\end{array}\right]^{T}$ for $\boldsymbol{x} \in \mathbb{R}^{n}$, seek \boldsymbol{x}^{*} so that $\boldsymbol{f}\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$
- At a particular point \boldsymbol{x}, the Jacobian of f, describes how f changes in a given direction of change in x,

$$
J_{\boldsymbol{f}}(\boldsymbol{x})=\left[\begin{array}{ccc}
\frac{d f_{1}}{d x_{1}}(\boldsymbol{x}) & \cdots & \frac{d f_{1}}{d x_{n}}(\boldsymbol{x}) \\
\vdots & & \vdots \\
\frac{d f_{m}}{d x_{1}}(\boldsymbol{x}) & \cdots & \frac{d f_{m}}{d x_{n}}(\boldsymbol{x})
\end{array}\right]
$$

Multivariate Newton Iteration

- Fixed-point iteration $\boldsymbol{x}_{k+1}=\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)$ achieves local convergence so long as $\left|\lambda_{\max }\left(\boldsymbol{J}_{\boldsymbol{g}}\left(\boldsymbol{x}^{*}\right)\right)\right|<1$ and quadratic convergence if $\boldsymbol{J}_{\boldsymbol{g}}\left(\boldsymbol{x}^{*}\right)=\boldsymbol{O}$:

Multidimensional Newton's Method

- Newton's method corresponds to the fixed-point iteration

$$
\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}-\boldsymbol{J}_{\boldsymbol{f}}^{-1}(\boldsymbol{x}) \boldsymbol{f}(\boldsymbol{x})
$$

- Quadratic convergence is achieved when the Jacobian of a fixed-point iteration is zero at the solution, which is true for Newton's method:

Estimating the Jacobian using Finite Differences

- To obtain $\boldsymbol{J}_{\boldsymbol{f}}\left(\boldsymbol{x}_{k}\right)$ at iteration k, can use finite differences:
- $n+1$ function evaluations are needed: $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{f}\left(\boldsymbol{x}+h \boldsymbol{e}_{i}\right), \forall i \in\{1, \ldots, n\}$, which correspond to $m(n+1)$ scalar function evaluations if $\boldsymbol{J}_{\boldsymbol{f}}\left(\boldsymbol{x}_{k}\right) \in \mathbb{R}^{m \times n}$.

Cost of Multivariate Newton Iteration

- What is the cost of solving $\boldsymbol{J}_{\boldsymbol{f}}\left(\boldsymbol{x}_{k}\right) \boldsymbol{s}_{k}=\boldsymbol{f}\left(\boldsymbol{x}_{k}\right)$?
- What is the cost of Newton's iteration overall?

Quasi-Newton Methods

In solving a nonlinear equation, seek approximate Jacobian $\boldsymbol{J}_{\boldsymbol{f}}\left(\boldsymbol{x}_{k}\right)$ for each \boldsymbol{x}_{k} - Find $\boldsymbol{B}_{k+1}=\boldsymbol{B}_{k}+\boldsymbol{\delta} \boldsymbol{B}_{k} \approx \boldsymbol{J}_{\boldsymbol{f}}\left(\boldsymbol{x}_{k+1}\right)$, so as to approximate secant equation

$$
\boldsymbol{B}_{k+1}(\underbrace{\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}}_{\boldsymbol{\delta} \boldsymbol{x}})=\underbrace{\boldsymbol{f}\left(\boldsymbol{x}_{k+1}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{k}\right)}_{\boldsymbol{\delta} \boldsymbol{f}}
$$

- Broyden's method solves the secant equation and minimizes $\left\|\boldsymbol{\delta} \boldsymbol{B}_{k}\right\|_{F}$:

$$
\boldsymbol{\delta} \boldsymbol{B}_{k}=\frac{\boldsymbol{\delta} \boldsymbol{f}-\boldsymbol{B}_{k} \boldsymbol{\delta} \boldsymbol{x}}{\|\boldsymbol{\delta} \boldsymbol{x}\|^{2}} \boldsymbol{\delta} \boldsymbol{x}^{T}
$$

Safeguarding Methods

- Can dampen step-size to improve reliability of Newton or Broyden iteration:
- Trust region methods provide general step-size control:

[^0]: ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

