CS 450: Numerical Anlaysis¹ Introduction to Scientific Computing

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Scientific Computing Applications

- Mathematical modelling for computational science Typical scientific computing problems are numerical solutions to PDEs
 - Newtonian dynamics: simulating particle systems in time
 - Models for fluids, air flow, plasmas, etc., for engineering
 - PDE-constrained numerical optimization: finding optimal configurations (used in engineering of control systems)
 - Computational chemistry (electronic structure calculations): many-electron Schrödinger equation

Numerical algorithms: linear algebra and optimization

- Linear algebra and numerical optimization are building blocks for machine learning and data science
- Computer architecture, compilers, and parallel computing use numerical algorithms (matrix multiplication, Gaussian elimination) as benchmarks

Course Structure

Complex numerical problems are generally reduced to simpler problems

The course topics will follow this hierarchical structure

Numerical Analysis

• Numerical Problems involving Continuous Phenomena:

Demo: Floating Point vs Program Logic

Sources of Error

Representation of Numbers:

Propagated Data Error:

Computational Error = $\hat{f}(x) - f(x)$ = Truncation Error + Rounding Error

Error Analysis

Visualization of Forward and Backward Error

Conditioning

Absolute Condition Number:

(Relative) Condition Number:

Posedness and Conditioning

What is the condition number of an ill-posed problem?

- If the condition number is bounded and the solution is unique, we know the problem is well-posed (solution changes continously)
- ► In fact, an alternative definition of an *ill-posed* problem is that f has a condition number of $\kappa_{abs}(f) = \infty$ (meaning f is not differentiable for some input)
- This condition implies that the solutions to a well-posed problem f are continuous and differentiable in the given space of possible inputs to f
- Geometrically, the condition number can be thought of as the reciprocal of the distance (in an appropriate geometric embedding of problem configurations) from f to the nearest ill-posed problem

Stability and Accuracy

Accuracy:

An algorithm is accurate if $\hat{f}(x) = f(x)$ for all inputs x when $\hat{f}(x)$ is computed in infinite precision

- ▶ In other words, the truncation error is zero (rounding error is ignored)
- More generally, an algorithm is accurate if its truncation error is negligible in the desired context
- Yet more generally, the accuracy of an algorithm is expressed in terms of bounds on the magnitude of its truncation error

Stability:

An algorithm is *stable* if its output in finite precision (floating point arithmetic) is always near its output in exact precision

- Stability measures the sensitivity of an algorithm to roundoff and truncation error
- In some cases, such as the approximation of a derivative using a finite difference formula, there is a trade-off between stability and accuracy

Error and Conditioning

- ► Two major sources of error: *roundoff* and *truncation* error.
 - roundoff error concerns floating point error due to finite precision
 - truncation error concerns error incurred due to algorithmic approximation, e.g. the representation of a function by a finite Taylor series

To study the propagation of roundoff error in arithmetic we can use the notion of conditioning.

Floating Point Numbers

Scientific Notation

Demo: Picking apart a floating point number Demo: Density of Floating Point Numbers

Significand (Mantissa) and Exponent Given x with s leading bits x_0, \ldots, x_{s-1}

Rounding Error

Demo: Floating point and the Harmonic Series **Demo:** Floating Point and the Series for the Exponential Function

Maximum Relative Representation Error (Machine Epsilon)

Demo: Catastrophic Cancellation

Rounding Error in Operations (I)

Addition and Subtraction

Rounding Error in Operations (II)

Multiplication and Division

Demo: Polynomial Evaluation Floating Point

Exceptional and Subnormal Numbers

Exceptional Numbers

Subnormal (Denormal) Number Range

Gradual Underflow: Avoiding underflow in addition

Floating Point Number Line

